Abstract:Many methods developed for calibration and validation of physically based distributed hydrological models are time consuming and computationally intensive. Only a small set of input parameters can be optimized, and the optimization often results in unrealistic values. In this study we adopted a multi-variable and multi-site approach to calibration and validation of the Soil Water Assessment Tool (SWAT) model for the Motueka catchment, making use of extensive field measurements. Not only were a number of hydrological processes (model components) in a catchment evaluated, but also a number of subcatchments were used in the calibration. The internal variables used were PET, annual water yield, daily streamflow, baseflow, and soil moisture. The study was conducted using an 11-year historical flow record (1990)(1991)(1992)(1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000); 1990-94 was used for calibration and 1995-2000 for validation. SWAT generally predicted well the PET, water yield and daily streamflow. The predicted daily streamflow matched the observed values, with a Nash-Sutcliffe coefficient of 0Ð78 during calibration and 0Ð72 during validation. However, values for subcatchments ranged from 0Ð31 to 0Ð67 during calibration, and 0Ð36 to 0Ð52 during validation. The predicted soil moisture remained wet compared with the measurement. About 50% of the extra soil water storage predicted by the model can be ascribed to overprediction of precipitation; the remaining 50% discrepancy was likely to be a result of poor representation of soil properties. Hydrological compensations in the modelling results are derived from water balances in the various pathways and storage (evaporation, streamflow, surface runoff, soil moisture and groundwater) and the contributions to streamflow from different geographic areas (hill slopes, variable source areas, sub-basins, and subcatchments). The use of an integrated multi-variable and multi-site method improved the model calibration and validation and highlighted the areas and hydrological processes requiring greater calibration effort.
After the SWAT (Soil and Water Assessment Tool) model was calibrated and validated to historic flow records for the current land use conditions, two additional land cover scenarios (a prehistoric land cover and a potential maximum plantation pine cover) were used to evaluate the impacts of land cover change on total water yields, groundwater flow, and quick flow in the Motueka River catchment, New Zealand. Low-flow characteristics and their potential impacts on availability for water abstraction and for support of in-stream habitat values were focused on. The results showed that the annual total water yields, quick flow and baseflow decreased moderately in the two scenarios when compared with the current actual land use. The annual water balance for the pine potential land cover scenario did not differ substantially from the prehistoric scenario for the catchment as whole. However, there were more notable differences among individual tributary catchments, which could be attributed to the relative area of land cover altered and location of those catchments. Simulated low flows for the prehistoric and potential pine land cover scenarios were both significantly lower than the low flows for the current land use. In summary, under the current land use conditions, both annual water yield and low flow are higher than was the case before human intervention in the area or in a maximum commercial reforestation scenario.
Through the lens of the 12 OECD Principles on Water Governance, this paper examines six water resources and water services frameworks in Europe, Asia-Pacific, Africa and South America to understand enhancing and constraining contextual factors. We use qualitative and quantitative methods to analyse each framework against four criteria: alignment; implementation; on-ground results; and policy impact. We identify four main target areas for improving water governance: policy coherence; financing; managing trade-offs; and ensuring integrity and transparency by all decisionmakers and stakeholders. We present suggestions to support practical implementation of the principles through better governmental action and stakeholder involvement.
This paper provides an overview of the Motueka integrated catchment management (ICM) research programme. This research was based on the thesis that achieving ecosystem resilience at a catchment scale requires active measures to develop community resilience. We define a generic adaptive planning and action process, with associated knowledge management and stakeholder involvement processes, and illustrate those processes with observations from five research themes: (1) water allocation; (2) land use effects on water; (3) land and freshwater impacts on the coast; (4) integrative tools and processes for managing cumulative effects; and (5) building human capital and facilitating community action. Our research clearly illustrates the benefits for effective decision-making of carrying out catchment scale science and management within collaborative processes which patiently develop trusting relationships. We conclude that coastal catchments should be managed as a holistic continuum from ridge tops to the sea and that some processes like floods or loss of community resilience have decadal consequences, which support the need for long-term monitoring and investment.
Success at integrated catchment management (ICM) requires the ongoing participation of different stakeholders in an adaptive and learning-based management process. However, this can be difficult to achieve in practice because many initiatives fail to address the underlying social process aspects required. We review emerging lessons around how to engage stakeholders in ways that support social learning. We focus on the experience of an ICM research programme based in the Motueka catchment in New Zealand and provide a simple framework for distinguishing a range of conversations across different communities of practice. We highlight the need to use multiple engagement approaches to address different constituent needs and opportunities, and to encourage the informal conversations that spring up around these. We then illustrate the range of platforms for dialogue and learning that were used in the programme during 10 years of ICM research. Finally, a number of lessons are described from across the programme to guide research leaders and managers seeking to improve collaboration in other integrated science, management and policy initiatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.