A sinusoidal silver grating is used to create a six-fold enhancement of the SPR response compared to a flat surface. The grating parameters are chosen to create a surface plasmon bandgap and it is shown that the enhancement of the sensitivity to bulk sample index occurs when operating near the bandgap. The Kretschmann configuration is considered and the Boundary Element Method is used to generate the dispersion curves.
A novel photothermal process to spatially modulate the concentration of sub-wavelength, high-index nanocrystals in a multicomponent Ge-As-Pb-Se chalcogenide glass thin film resulting in an optically functional infrared grating is demonstrated. The process results in the formation of an optical nanocomposite possessing ultralow dispersion over unprecedented bandwidth. The spatially tailored index and dispersion modification enables creation of arbitrary refractive index gradients. Sub-bandgap laser exposure generates a Pb-rich amorphous phase transforming on heat treatment to high-index crystal phases. Spatially varying nanocrystal density is controlled by laser dose and is correlated to index change, yielding local index modification to ≈+0.1 in the mid-infrared.
Two-dimensional parallel optical interconnects (2-D-POIs) are capable of providing large connectivity between elements in computing and switching systems. Using this technology we have demonstrated a bidirectional optical interconnect between two printed circuit boards containing optoelectronic (OE) very large scale integration (VLSI) circuits. The OE-VLSI circuits were constructed using vertical cavity surface emitting lasers (VCSELs) and photodiodes (PDs) flip-chip bump-bonded to a 0.35m complementary metal-oxide-semiconductor (CMOS) chip. The CMOS was comprised of 256 laser driver circuits, 256 receiver circuits, and the corresponding buffering and control circuits required to operate the large transceiver array. This is the first system, to our knowledge, to send bidirectional data optically between OE-VLSI chips that have both VCSELs and photodiodes cointegrated on the same substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.