Adaptations to the cold and to short growing seasons characterize arctic life, but climate in the Arctic is warming at an unprecedented rate. Will plant and animal populations of the Arctic be able to cope with these drastic changes in environmental conditions? Here we explore the potential contribution of evolution by natural selection to the current response of populations to climate change. We focus on the spring phenology of populations because it is highly responsive to climate change and easy to document across a wide range of species. We show that evolution can be fast and can occur at the time scale of a few decades. We present an example of reproductive phenological change associated with climate change (North American red squirrels in the Yukon), where a detailed analysis of quantitative genetic parameters demonstrates contemporary evolution. We answer a series of frequently asked questions that should help biologists less familiar with evolutionary theory and quantitative genetic methods to think about the role of evolution in current responses of ecological systems to climate change. Our conclusion is that evolution by natural selection is a pertinent force to consider even at the time scale of contemporary climate changes. However, all species may not be equal in their capacity to benefit from contemporary evolution.
Mast seeding involves the episodic and synchronous production of large seed crops by perennial plants. The predator satiation hypothesis proposes that mast seeding maximizes seed escape because seed predators consume a decreasing proportion of available seeds with increasing seed production. However, the seed escape benefits of masting depend not only on whether predators are satiated at high levels of seed production, but also on the shape of their functional response (type II vs. type III), and the actual proportion of available seeds that they consume at different levels of seed production. North American red squirrels (Tamiasciurus hudsonicus) are the primary vertebrate predator of white spruce (Picea glauca) mast seed crops in many boreal regions because they hoard unopened cones in underground locations, preempting the normal sequence of cone opening, seed dispersal, and seed germination. We document the functional response of cone-hoarding by red squirrels across three non-mast years and one mast year by estimating the number of cones present in the territories of individual red squirrels and the proportion of these cones that they hoarded each autumn. Even though red squirrels are not constrained by the ingestive and on-body (fat reserves) energy reserve limitations experienced by animals that consume seeds directly, most squirrels hoarded < 10% of the cones present on their territories under mast conditions. Cone availability during non-mast years also reached levels that satiated the hoarding activity of red squirrels; however, this occurred only on the highest-quality territories. Squirrels switched to mushroom-hoarding when cone production was low and mushrooms were abundant. This resulted in type III functional response whereby the proportional harvest of cones was highest at levels of cone availability that were intermediate within non-mast years. Overall, more cones escaped squirrel cone-hoarding during a mast event than when cone production was low in non-mast years, which supports the predator satiation hypothesis. However, the highly variable seed escape in non-mast years may help to explain why all spruce cone production is not concentrated into fewer, larger, mast years.
Selection will result in observable changes in traits only if it acts consistently in space and time, but few estimates of selection in natural populations have been temporally replicated. Here we estimate viability selection on nestling growth rates for 13 cohorts (1989)(1990)(1991)(1992)(1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001) of red squirrels (Tamiasciurus hudsonicus) from a natural population located in southwestern Yukon, Canada. Directional selection on nestling growth rates varied in magnitude and direction from one cohort to the next. The magnitude of directional selection was relatively weak in most years (median Ј ϭ 0.24), but there were episodes of very strong viability selection (Ј Ͼ 0.5) in some cohorts. We found no evidence of significant stabilizing or disruptive selection on this trait. Examination of viability selection episodes over shorter time periods suggested that the strength of selection on juveniles in this population was positively related to the time scale over which selection was measured. Viability selection from birth to emergence from the natal nest (50 days of age) and from emergence to successful recruitment (100 days of age) were positively correlated, but were both independent of selection on nestling growth rates from recruitment to potential breeding age (one year). The strength of directional selection on growth rates prior to recruitment was negatively correlated with spring temperature whereas selection from recruitment to breeding was positively correlated with the abundance of spruce cones produced in the previous fall. Episodes of strong directional selection from birth to breeding age appear to be due to potentially rare combinations of environmental conditions. As a result, predicting the occurrence of very strong episodes of selection will be extremely difficult, but predicting the microevolutionary responses to observed selection on individual cohorts remains feasible.
Maternal effects are widespread and can have dramatic influences on evolutionary dynamics, but their genetic basis has been measured rarely in natural populations. We used cross-fostering techniques and a long-term study of a natural population of red squirrels, Tamiasciurus hudsonicus, to estimate both direct (heritability) and indirect (maternal) influences on the potential for evolution. Juvenile growth in both body mass and size had significant amounts of genetic variation (mass h(2) = 0.10; size h(2) = 0.33), but experienced large, heritable maternal effects. Growth in body mass also had a large positive covariance between direct and maternal genetic effects. The consideration of these indirect genetic effects revealed a greater than three-fold increase in the potential for evolution of growth in body mass (h(2)t = 0.36) relative to that predicted by heritability alone. Simple heritabilities, therefore, may severely underestimate or overestimate the potential for evolution in natural populations of animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.