A plethora of publications on techniques and methodologies for measuring nitric oxide (NO) or reaction products of NO (NO metabolites) has served in recent years to complicate and confuse the majority of researchers interested in this field. Here, we provide a practical approach and summarize the key issues and corresponding solutions regarding quantification with the use of ozone-based chemiluminescence, which is the most accurate, sensitive, and widely used NO detection method. We have drawn on the vast experience of leaders in the field to produce this consensus, but the views and implications presented herein represent our own, and we limit our advice to those techniques with which we have direct experience. Hopefully, this guide will allow authors to make more informed decisions regarding NO metabolite measurement methodology, without the need for each subsequent group to rediscover previously observed advantages and pitfalls.
Inorganic nitrite has recently been recognized to possess vascular activity that is enhanced in hypoxia. This has been demonstrated in humans in the forearm vascular bed. In animal models nitrite reduces pulmonary vascular resistance, but its effects upon the pulmonary circulation of humans have not yet been demonstrated. This paradigm is of particular interest mechanistically since the pulmonary vasculature is known to behave differently to the systemic. To investigate, 18 healthy volunteers were studied in a hypoxic chamber (inspired oxygen, 12%) or while breathing room air. Each received an infusion of sodium nitrite (1 micromol/min) or 0.9% saline. Three protocols were performed: nitrite/hypoxia (n = 12), saline/hypoxia (n = 6), and nitrite/normoxia (n = 6). Venous blood was sampled for plasma nitrite, forearm blood flow was measured by strain-gauge plethysmography, and pulmonary arterial pressure was measured by transthoracic echocardiography. Plasma nitrite doubled and clearance kinetics were similar whether nitrite was infused in hypoxia or normoxia. During hypoxia, nitrite increased forearm blood flow (+36%, P < 0.001) and reduced three separate indirect indexes of pulmonary arterial pressure by 16%, 12%, and 17% (P < 0.01). Pulmonary, but not systemic, arterial effects persisted 1 h after stopping the infusion, at a time when plasma nitrite had returned to baseline. No effects were observed during normoxia. Therefore, in hypoxic but not normoxic subjects, sodium nitrite causes arterial and pulmonary vasodilatation. In addition, hypoxia-induced pulmonary vasoconstriction was attenuated for a prolonged period and not dependent on a simultaneous elevation of plasma nitrite. This finding is consistent with the direct extravascular metabolism of nitrite to nitric oxide to effect hypoxia-associated bioactivity.
Background and purpose:It is postulated that nitrite requires reduction to nitric oxide in order to exert its relaxant effect upon isolated hypoxic vessels. Herein, we evaluate the relative contribution of nitric oxide and characterize the downstream mechanisms of nitrite-induced vasorelaxation. Experimental approach: Aortic rings were treated with pharmacological agents and exposed to hypoxia (<1% O2). Following pre-constriction, nitrite (10 mM final) was added to appropriate baths; isometric tension was recorded throughout. Key results: Nitrite (under hypoxic conditions at physiological pH) is capable of exerting physiological effects that cannot be completely inhibited by the inhibitor of soluble guanylate cyclase (sGC), 1H [1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one or a nitric oxide scavenger (carboxy-2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide). Simultaneous blockade of both sGC and cyclooxygenase (COX) completely inhibited the response to nitrite. With regard to the nitric oxide-dependent component, we confirm that aldehyde oxidase, but not xanthine oxidase or endothelial nitric oxide synthase, was important for the actions of nitrite in our model. Conclusions and implications:Nitric oxide generated from nitrite is not exclusively responsible for the physiological actions observed in isolated hypoxic vessels. Nitrite operates via different pathways dependent on the presence or absence of endothelium to produce vasorelaxation. In intact vessels, both sGC and COX enzymes appear to be important. Irrespective of this difference in relaxation mechanism, nitrite is capable of producing the same maximum relaxation, regardless of the presence of endothelium. Having investigated possible nitrite reduction sites, we confirm that aldehyde oxidase is important for the actions of nitrite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.