The cow rumen is adapted for the breakdown of plant material into energy and nutrients, a task largely performed by enzymes encoded by the rumen microbiome. Here we present 913 draft bacterial and archaeal genomes assembled from over 800 Gb of rumen metagenomic sequence data derived from 43 Scottish cattle, using both metagenomic binning and Hi-C-based proximity-guided assembly. Most of these genomes represent previously unsequenced strains and species. The draft genomes contain over 69,000 proteins predicted to be involved in carbohydrate metabolism, over 90% of which do not have a good match in public databases. Inclusion of the 913 genomes presented here improves metagenomic read classification by sevenfold against our own data, and by fivefold against other publicly available rumen datasets. Thus, our dataset substantially improves the coverage of rumen microbial genomes in the public databases and represents a valuable resource for biomass-degrading enzyme discovery and studies of the rumen microbiome.
T he assembly of high-quality genomes from mixed microbial samples is a long-standing challenge in genomics and metagenomics. Here, we describe the application of ProxiMeta, a Hi-C-based metagenomic deconvolution method, to deconvolve a human fecal metagenome. This method uses the intra-cellular proximity signal captured by Hi-C as a direct indicator of which sequences originated in the same cell, enabling culture-free de novo deconvolution of mixed genomes without any reliance on a priori information. We show that ProxiMeta deconvolution provides results of markedly high accuracy and sensitivity, yielding 50 near-complete microbial genomes (many of which are novel) from a single fecal sample, out of 252 total genome clusters. ProxiMeta outperforms traditional contig binning at high-quality genome reconstruction. ProxiMeta shows particularly good performance in constructing high-quality genomes for diverse but poorly-characterized members of the human gut. We further use ProxiMeta to reconstruct genome plasmid content and sharing of plasmids among genomes-tasks that traditional binning methods usually fail to accomplish. Our findings suggest that Hi-C-based deconvolution can be useful to a variety of applications in genomics and metagenomics.
Viruses play crucial roles in the ecology of microbial communities, yet they remain relatively understudied in their native environments. Despite many advancements in high-throughput whole-genome sequencing (WGS), sequence assembly, and annotation of viruses, the reconstruction of full-length viral genomes directly from metagenomic sequencing is possible only for the most abundant phages and requires long-read sequencing technologies. Additionally, the prediction of their cellular hosts remains difficult from conventional metagenomic sequencing alone. To address these gaps in the field and to accelerate the study of viruses directly in their native microbiomes, we developed an end-to-end bioinformatics platform for viral genome reconstruction and host attribution from metagenomic data using proximity-ligation sequencing (i.e., Hi-C). We demonstrate the capabilities of the platform by recovering and characterizing the metavirome of a variety of metagenomes, including a fecal microbiome that has also been sequenced with accurate long reads, allowing for the assessment and benchmarking of the new methods. The platform can accurately extract numerous near-complete viral genomes even from highly fragmented short-read assemblies and can reliably predict their cellular hosts with minimal false positives. To our knowledge, this is the first software for performing these tasks. Being significantly cheaper than long-read sequencing of comparable depth, the incorporation of proximity-ligation sequencing in microbiome research shows promise to greatly accelerate future advancements in the field.
Background Bacterial vaginosis (BV) is a common cause of vaginal discharge and associated with vaginal acquisition of BV-associated bacteria (BVAB). Methods We used quantitative polymerase chain reaction assays to determine whether presence or concentrations of BVAB in the mouth, anus, vagina, or labia before BV predict risk of incident BV in 72 women who have sex with men. Results Baseline vaginal and extra-vaginal colonization with Gardnerella spp, Megasphaera spp, Sneathia spp, BVAB-2, Dialister sp type 2, and other BVAB was more common among subjects with incident BV. Conclusions Prior colonization with BVAB is a consistent risk for BV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.