The dermal papilla (DP) provide instructive signals required to activate epithelial progenitors and initiate hair follicle regeneration. DP cell numbers fluctuate over the hair cycle, and hair loss is associated with gradual depletion/atrophy of DP cells. How DP cell numbers are maintained in healthy follicles remains unclear. We performed in vivo fate mapping of adult hair follicle dermal sheath (DS) cells to determine their lineage relationship with DP and found that a subset of DS cells are retained following each hair cycle, exhibit self-renewal, and repopulate the DS and the DP with new cells. Ablating these hair follicle dermal stem cells and their progeny retarded hair regrowth and altered hair type specification, suggesting that they function to modulate normal DP function. This work identifies a bipotent stem cell within the adult hair follicle mesenchyme and has important implications toward restoration of hair growth after injury, disease, and aging.
Highlights d Hair follicle (HF) dermal stem cells make minor contributions to skin and HF neogenesis d Extrafollicular Hic1 + progenitors regenerate injured dermis and populate neogenic HFs d Distinct transcriptional and epigenetic changes mediate fibroblast heterogeneity d Runx1, retinoic acid, and Hic1 control mesenchymal regenerative competence
The adult hair follicle (HF) undergoes successive regeneration driven by resident epithelial stem cells and neighboring mesenchyme. Recent work described the existence of HF dermal stem cells (hfDSCs), but the genetic regulation of hfDSCs and their daughter cell lineages in HF regeneration remains unknown. Here we prospectively isolate functionally distinct mesenchymal compartment in the HF (dermal cup [DC; includes hfDSCs] and dermal papilla) and define the transcriptional programs involved in hfDSC function and acquisition of divergent mesenchymal fates. From this, we demonstrate cross-compartment mesenchymal signaling within the HF niche, whereby DP-derived R-spondins act to stimulate proliferation of both hfDSCs and epithelial progenitors during HF regeneration. Our findings describe unique transcriptional programs that underlie the functional heterogeneity among specialized fibroblasts within the adult HF and identify a novel regulator of mesenchymal progenitor function during tissue regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.