Chloroplast biogenesis has been well documented in higher plants, yet the complex methods used to regulate chloroplast activity under fluctuating environmental conditions are not well understood. In rice (Oryza sativa), the CYTOKININ-RESPONSIVE GATA TRANSCRIPTION FACTOR1 (Cga1) shows increased expression following light, nitrogen, and cytokinin treatments, while darkness and gibberellin reduce expression. Strong overexpression of Cga1 produces dark green, semidwarf plants with reduced tillering, whereas RNA interference knockdown results in reduced chlorophyll and increased tillering. Coexpression, microarray, and real-time expression analyses demonstrate a correlation between Cga1 expression and the expression of important nucleus-encoded, chloroplast-localized genes. Constitutive Cga1 overexpression increases both chloroplast biogenesis and starch production but also results in delayed senescence and reduced grain filling. Growing the transgenic lines under different nitrogen regimes indicates potential agricultural applications for Cga1, including manipulation of biomass, chlorophyll/ chloroplast content, and harvest index. These results indicate a conserved mechanism by which Cga1 regulates chloroplast development in higher plants.
ORCID IDs: 0000-0002-3136-9594 (J.C.); 0000-0001-9746-2583 (V.R.).The activity of the maize (Zea mays) florigen gene ZEA CENTRORADIALIS8 (ZCN8) is associated with the floral transition in both day-neutral temperate maize and short-day (SD)-requiring tropical maize. We analyzed transcription and chromatin modifications at the ZCN8 locus and its nearly identical paralog ZCN7 during the floral transition. This analysis was performed with day-neutral maize (Zea mays ssp. mays), where flowering is promoted almost exclusively via the autonomous pathway through the activity of the regulatory gene indeterminate1 (id1), and tropical teosinte (Zea mays ssp. parviglumis) under floral inductive and noninductive photoperiods. Comparison of ZCN7/ZCN8 histone modification profiles in immature leaves of nonflowering id1 mutants and teosinte grown under floral inhibitory photoperiods reveals that both id1 floral inductive activity and SD-mediated induction result in histone modification patterns that are compatible with the formation of transcriptionally competent chromatin environments. Specific histone modifications are maintained during leaf development and may represent a chromatin signature that favors the production of processed ZCN7/ZCN8 messenger RNA in florigen-producing mature leaf. However, whereas id1 function promotes histone H3 hyperacetylation, SD induction is associated with increased histone H3 dimethylation and trimethylation at lysine-4. In addition, id1 and SD differently affect the production of ZCN7/ZCN8 antisense transcript. These observations suggest that distinct mechanisms distinguish florigen regulation in response to autonomous and photoperiod pathways. Finally, the identical expression and histone modification profiles of ZCN7 and ZCN8 in response to floral induction suggest that ZCN7 may represent a second maize florigen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.