Plants can survive a limiting nitrogen (N) supply by developing a set of N limitation adaptive responses. However, the Arabidopsis nla (nitrogen limitation adaptation) mutant fails to produce such responses, and cannot adapt to N limitation. In this study, the nla mutant was utilized to understand further the effect of NLA on Arabidopsis adaptation to N limitation. Grown with limiting N, the nla mutant could not accumulate anthocyanins and instead produced an N limitation-induced early senescence phenotype. In contrast, when supplied with limiting N and limiting phosphorus (Pi), the nla mutants accumulated abundant anthocyanins and did not show the N limitation-induced early senescence phenotype. These results support the hypothesis that Arabidopsis has a specific pathway to control N limitation-induced anthocyanin synthesis, and the nla mutation disrupts this pathway. However, the nla mutation does not affect the Pi limitation-induced anthocyanin synthesis pathway. Therefore, Pi limitation induced the nla mutant to accumulate anthocyanins under N limitation and allowed this mutant to adapt to N limitation. Under N limitation, the nla mutant had a significantly down-regulated expression of many genes functioning in anthocyanin synthesis, and an enhanced expression of genes involved in lignin production. Correspondingly, the nla mutant grown with limiting N showed a significantly lower production of anthocyanins (particularly cyanidins) and an increase in lignin contents compared with wild-type plants. These data suggest that NLA controls Arabidopsis adaptability to N limitation by channelling the phenylpropanoid metabolic flux to the induced anthocyanin synthesis, which is important for Arabidopsis to adapt to N limitation.
Chloroplast development is an important determinant of plant productivity and is controlled by environmental factors including amounts of light and nitrogen as well as internal phytohormones including cytokinins and gibberellins (GA). The paralog GATA transcription factors GNC and CGA1/GNL up-regulated by light, nitrogen and cytokinin while also being repressed by GA signaling. Modifying the expression of these genes has previously been shown to influence chlorophyll content in Arabidopsis while also altering aspects of germination, elongation growth and flowering time. In this work, we also use transgenic lines to demonstrate that GNC and CGA1 exhibit a partially redundant control over chlorophyll biosynthesis. We provide novel evidence that GNC and CGA1 influence both chloroplast number and leaf starch in proportion to their transcript level. GNC and CGA1 were found to modify the expression of chloroplast localized GLUTAMATE SYNTHASE (GLU1/Fd-GOGAT), which is the primary factor controlling nitrogen assimilation in green tissue. Altering GNC and CGA1 expression was also found to modulate the expression of important chlorophyll biosynthesis genes (GUN4, HEMA1, PORB, and PORC). As previously demonstrated, the CGA1 transgenic plants demonstrated significantly altered timing to a number of developmental events including germination, leaf production, flowering time and senescence. In contrast, the GNC transgenic lines we analyzed maintain relatively normal growth phenotypes outside of differences in chloroplast development. Despite some evidence for partial divergence, results indicate that regulation of both GNC and CGA1 by light, nitrogen, cytokinin, and GA acts to modulate nitrogen assimilation, chloroplast development and starch production. Understanding the mechanisms controlling these processes is important for agricultural biotechnology.
Thymus, an important component of hematopoietic tissue, is a well-documented ''target'' of radiation carcinogenesis. Both acute and fractionated irradiation result in a high risk of leukemia and thymic lymphoma. However, the exact mechanisms underlying radiation-induced predisposition to leukemia and lymphoma are still unknown, and the contributions of genetic and epigenetic mechanisms in particular have yet to be defined. Global DNA hypomethylation is a well-known characteristic of cancer cells. Recent studies have also shown that tumor cells undergo prominent changes in histone methylation, particularly a substantial loss of trimethylation of histone H4-Lys 20 and demethylation of genomic DNA. These losses are considered a universal marker of malignant transformation. In the present study, we investigated the effect of low-dose radiation exposure on the accumulation of DNA lesions and alterations of DNA methylation and histone H4-Lys 20 trimethylation in the thymus tissue using an in vivo murine model. For the first time, we show that fractionated whole-body application of 0.5 Gy X-ray leads to decrease in histone H4-Lys 20 trimethylation in the thymus. The loss of histone H4-Lys 20 trimethylation was accompanied by a significant decrease in global DNA methylation as well as the accumulation of DNA damage as monitored by persistence of histone ;H2AX foci in the thymus tissue of mice exposed to fractionated irradiation. Altered DNA methylation was associated with reduced expression of maintenance (DNMT1) and, to a lesser extent, de novo DNA methyltransferase DNMT3a in exposed animals. Expression of another de novo DNA methyltransferase DNMT3b was decreased only in males. Irradiation also resulted in f20% reduction in the levels of methyl-binding proteins MeCP2 and MBD2. Our results show the involvement of epigenetic alterations in radiation-induced responses in vivo. These changes may play a role in genome destabilization that ultimately leads to cancer. (Mol Cancer Res 2005;3(10):553 -61)
Chloroplast biogenesis has been well documented in higher plants, yet the complex methods used to regulate chloroplast activity under fluctuating environmental conditions are not well understood. In rice (Oryza sativa), the CYTOKININ-RESPONSIVE GATA TRANSCRIPTION FACTOR1 (Cga1) shows increased expression following light, nitrogen, and cytokinin treatments, while darkness and gibberellin reduce expression. Strong overexpression of Cga1 produces dark green, semidwarf plants with reduced tillering, whereas RNA interference knockdown results in reduced chlorophyll and increased tillering. Coexpression, microarray, and real-time expression analyses demonstrate a correlation between Cga1 expression and the expression of important nucleus-encoded, chloroplast-localized genes. Constitutive Cga1 overexpression increases both chloroplast biogenesis and starch production but also results in delayed senescence and reduced grain filling. Growing the transgenic lines under different nitrogen regimes indicates potential agricultural applications for Cga1, including manipulation of biomass, chlorophyll/ chloroplast content, and harvest index. These results indicate a conserved mechanism by which Cga1 regulates chloroplast development in higher plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.