Permeable reactive barriers (PRBs) have shown great promise as an alternative to pump and treat for the remediation of groundwater containing a wide array of contaminants including organics, metals, and radionuclides. Analyses to date have focused on individual case studies, rather than considering broad performance issues. In response to this need, this study analyzed data from field installations of in situ zerovalent iron (ZVI) PRBs to determine what parameters contribute to PRB failure. Although emphasis has been placed on losses of reactivity and permeability, imperfect hydraulic characterization was the most common cause of the few PRB failures reported in the literature. Graphical and statistical analyses suggested that internal E H , influent pH, and influent concentrations of alkalinity, NO 3 Ϫ and Cl Ϫ are likely to be the strongest predictors of PRBs that could be at risk for diminished performance. Parameters often cited in the literature such as saturation indices, dissolved oxygen, and total dissolved solids did not seem to have much predictive capability. Because of the relationship between the predictive parameters and corrosion inhibition, it appears that reactivity of the ZVI, rather than the reduction in permeability, is more likely the factor that limits PRB longevity in the field. Due to the sparseness of field monitoring of parameters such as E H , the data available for these analyses were limited. Consequently, these results need to be corroborated as additional measurements become available.
Purpose The aim of this paper is to provide science-based consensus and guidance for health effects modelling in comparative assessments based on human exposure and toxicity. This aim is achieved by (a) describing the USEtox™ exposure and toxicity models representing consensus and recommended modelling practice, (b) identifying key mechanisms influencing human exposure and toxicity effects of chemical emissions, (c) extending substance coverage. Methods The methods section of this paper contains a detailed documentation of both the human exposure and toxic effects models of USEtox™, to determine impacts on human health per kilogram substance emitted in different compartments. These are considered as scientific consensus and therefore recommended practice for comparative toxic impact assessment. The framework of the exposure model is described in details including the modelling of each exposure pathway considered (i.e. inhalation through air, ingestion through (a) drinking water, (b) agricultural produce, (c) meat and milk, and (d) fish). The calculation of human health effect factors for cancer and non-cancer effects via ingestion and inhalation exposure respectively is described. This section also includes discussions regarding parameterisation and estimation of input data needed, including route-to-route and acute-to-chronic extrapolations. Results and discussion For most chemicals in USEtox™, inhalation, above-ground agricultural produce, and fish are the important exposure pathways with key driving factors being Electronic supplementary material The online version of this article (
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Purpose The USEtox model was developed in a scientific consensus process involving comparison of and harmonization between existing environmental multimedia fate models. USEtox quantitatively models the continuum from chemical emission to freshwater ecosystem toxicity via chemicalspecific characterization factors (CFs) for Life Cycle Impact Assessment (LCIA). This work provides understanding of the key mechanisms and chemical parameters influencing fate in the environment and impact on aquatic ecosystems. Materials and method USEtox incorporates a matrix framework for multimedia modeling, allowing separation of fate, exposure, and ecotoxicity effects in the determination of an overall CF. Current best practices, such as incorporation of intermittent rain and effect factors (EF) based on substance toxicity across species, are implemented in the model. The USEtox database provides a dataset of over 3,000 organic chemicals, of which approximately 2,500 have freshwater EFs. Freshwater characterization factors for these substances, with a special focus on a subset of chemicals with characteristic properties, were analyzed to understand the contributions of fate, exposure, and effect on the overall CFs. The approach was based on theoretical interpretation of the multimedia model components as well as multidimensional graphical analysis.Electronic supplementary material The online version of this article (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.