Permeable reactive barriers (PRBs) have shown great promise as an alternative to pump and treat for the remediation of groundwater containing a wide array of contaminants including organics, metals, and radionuclides. Analyses to date have focused on individual case studies, rather than considering broad performance issues. In response to this need, this study analyzed data from field installations of in situ zerovalent iron (ZVI) PRBs to determine what parameters contribute to PRB failure. Although emphasis has been placed on losses of reactivity and permeability, imperfect hydraulic characterization was the most common cause of the few PRB failures reported in the literature. Graphical and statistical analyses suggested that internal E H , influent pH, and influent concentrations of alkalinity, NO 3 Ϫ and Cl Ϫ are likely to be the strongest predictors of PRBs that could be at risk for diminished performance. Parameters often cited in the literature such as saturation indices, dissolved oxygen, and total dissolved solids did not seem to have much predictive capability. Because of the relationship between the predictive parameters and corrosion inhibition, it appears that reactivity of the ZVI, rather than the reduction in permeability, is more likely the factor that limits PRB longevity in the field. Due to the sparseness of field monitoring of parameters such as E H , the data available for these analyses were limited. Consequently, these results need to be corroborated as additional measurements become available.
Quantitative descriptions of two‐phase flow in the subsurface require knowledge of the capillary pressure‐saturation relationships. The effect of interfacial forces on the drainage capillary pressure‐saturation relationship for organic liquid‐water systems is usually expressed by the ratio of the liquid‐liquid interfacial tensions as given by Leverett's (1941) function. To assess the appropriateness of this approach for primary drainage of organic liquid‐water systems typical of hazardous waste sites and to evaluate its extendability to spontaneous imbibition, measurements were made of these relationships for various immiscible liquid systems in unconsolidated sand. The results showed increasing deviations with decreasing interfacial forces between the measured values and those predicted by a ratio of interfacial tensions. To improve the predictive capability of Leverett's function, forms including the intrinsic contact angle and roughness were examined. Scaling of the capillary pressure relationships was best achieved by including a correction for both interface curvature and roughness. These corrections became significant for drainage for contact angles larger than 35°–55°, and for imbibition for contact angles larger than 15°–25°. None of the forms of Leverett's function examined predicted the increased residual saturation with decreasing interfacial forces observed in this study. Consequently, their ability to scale the measured data was predicated on posing the saturation of the wetting phase in terms of the variable effective saturation.
The reverse KM estimator is recommended for estimation of the distribution function and population percentiles in preference to commonly used methods such as substituting LOD/2 or LOD/ radical2 for values below the LOD, assuming a known parametric distribution, or using imputation to replace the left-censored values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.