In the present study some experimental parameters for in situ hybridization histochemistry (ISHH) have been analysed using 35S-labelled and alkaline phosphatase-conjugated probes, in order to develop a reproducible double-labelling procedure. We have compared the total exclusion of tissue fixation with tissue sections fixed by immersion in formalin. In addition, the effect of dithiothreitol was assessed both when combining radiolabelled and non-radioactive probes on a single tissue section and when the probes were used separately. Hybridization of unfixed tissue resulted in stronger specific labelling and lower background both for radiolabelled and alkaline phosphatase-conjugated probes. No loss in tissue preservation was seen at the light microscopic level after hybridization of unfixed tissue. High concentrations (200 mM) of dithiothreitol strongly suppressed background when using 35S-labelled probes, whereas in the non-radioactive procedure, alkaline phosphatase labelling could only be achieved with very low dithiothreitol concentrations (less than 1 mM). This incompatibility led to a protocol using unfixed tissue sections and a sequential hybridization procedure, with the radiolabelled probe and high concentrations of dithiothreitol in the first step and the alkaline phosphatase-conjugated probe without dithiothreitol in the second step.
Mycobacterium tuberculosis (Mtb) disrupts anti-microbial pathways of macrophages, cells that normally kill bacteria. Over 40 years ago, D'Arcy Hart showed that Mtb avoids delivery to lysosomes, but the molecular mechanisms that allow Mtb to elude lysosomal degradation are poorly understood. Specialized secretion systems are often used by bacterial pathogens to translocate effectors that target the host, and Mtb encodes type VII secretion systems (TSSSs) that enable mycobacteria to secrete proteins across their complex cell envelope; however, their cellular targets are unknown. Here, we describe a systematic strategy to identify bacterial virulence factors by looking for interactions between the Mtb secretome and host proteins using a high throughput, high stringency, yeast two-hybrid (Y2H) platform. Using this approach we identified an interaction between EsxH, which is secreted by the Esx-3 TSSS, and human hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs/Hrs), a component of the endosomal sorting complex required for transport (ESCRT). ESCRT has a well-described role in directing proteins destined for lysosomal degradation into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs), ensuring degradation of the sorted cargo upon MVB-lysosome fusion. Here, we show that ESCRT is required to deliver Mtb to the lysosome and to restrict intracellular bacterial growth. Further, EsxH, in complex with EsxG, disrupts ESCRT function and impairs phagosome maturation. Thus, we demonstrate a role for a TSSS and the host ESCRT machinery in one of the central features of tuberculosis pathogenesis.
Tumor-stromal communications impact tumorigenesis in ways that are incompletely understood. Here we show that Glioma Associated-human Mesenchymal Stem Cells (GA-hMSCs), a newly identified stromal component of glioblastoma, release exosomes that increase the proliferation and clonogenicity of tumor-initiating Glioma Stem-like Cells (GSCs). This event leads to a significantly greater tumor burden and decreased host survival compared to untreated GSCs in orthotopic xenografts. Analysis of the exosomal content identified miR-1587 as a mediator of the exosomal effects on GSCs, in part via down-regulation of the tumor suppressive nuclear receptor co-repressor NCOR1. Our results illuminate the tumor-supporting role for GA-hMSCs by identifying GA-hMSC-derived exosomes in the intercellular transfer of specific miRNA that enhance the aggressiveness of glioblastoma.
Several proteins that are of importance for membrane trafficking in the nerve terminal have recently been characterized. We have used Western blot and immunohistochemistry to show that synaptotagmin, synaptobrevin/VAMP (vesicle-associated membrane protein), SNAP-25 (synaptosomal-associated protein of 25 kDa), and syntaxin proteins are present in cells of the islets of Langerhans in the endocrine pancreas. Synaptotagmin-like immunoreactivity (-LI) was localized to granules within the cytoplasm of a few endocrine cells located in the periphery of the islets, identified as somatostatincontaining cells, and in many nerve fibers within the islets. VAMP-LI was seen in granules of virtually all pancreatic islet cells and also in nerve fibers. SNAP-25-LI and syntaxin-LI were predominantly present in the plasma membrane ofthe endocrine cells, including insulin-producing (I cells. In situ hybridization, using isoform-specific oligonucleotide probes, detected VAMP-2, cellubrevin, SNAP-25, syntaxin 1A, 4, and 5, and munc-18 mRNAs in isolated pancreatic islets and in insulinproducing cells. The results show the presence of several synaptic proteins at protein and mRNA levels in pancreatic islet cells, suggesting that they may have specific roles in the molecular regulation of exocytosis also in insulin-secreting cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.