We study equilibrium configurations of swarming biological organisms subject to exogenous and pairwise endogenous forces. Beginning with a discrete dynamical model, we derive a variational description of the corresponding continuum population density. Equilibrium solutions are extrema of an energy functional, and satisfy a Fredholm integral equation. We find conditions for the extrema to be local minimizers, global minimizers, and minimizers with respect to infinitesimal Lagrangian displacements of mass. In one spatial dimension, for a variety of exogenous forces, endogenous forces, and domain configurations, we find exact analytical expressions for the equilibria. These agree closely with numerical simulations of the underlying discrete model.The exact solutions provide a sampling of the wide variety of equilibrium configurations possible within our general swarm modeling framework. The equilibria typically are compactly supported and may contain δ-concentrations or jump discontinuities at the edge of the support. We apply our methods to a model of locust swarms, which are observed in nature to consist of a concentrated population on the ground separated from an airborne group. Our model can reproduce this configuration; quasi-twodimensionality of the model plays a critical role.
Abstract. We study the first passage time problem for a diffusing molecule in an enclosed region to hit a small spherical target whose surface contains many small absorbing traps. This study is motivated by two examples of cellular transport. The first is the intracellular process through which proteins transit from the cytosol to the interior of the nucleus through nuclear pore complexes that are distributed on the nuclear surface. The second is the problem of chemoreception, in which cells sense their surroundings through diffusive contact with receptors distributed on the cell exterior. Using a matched asymptotic analysis in terms of small absorbing pore radius, we derive and numerically verify a high order expansion for the capacitance of the structured target which incorporates surface effects and gives explicit information on interpore interaction through a Coulomb-type discrete energy with additional logarithmic dependencies. In the large N dilute surface trap fraction limit, a single homogenized Robin boundary condition ∂nv + κv = 0 is derived in which κ depends on the total absorbing fraction, the characteristic pore scale, and parameters relating to interpore interactions.
We classify and predict the asymptotic dynamics of a class of swarming models. The model consists of a conservation equation in one dimension describing the movement of a population density field. The velocity is found by convolving the density with a kernel describing attractive-repulsive social interactions. The kernel's first moment and its limiting behavior at the origin determine whether the population asymptotically spreads, contracts, or reaches steady-state. For the spreading case, the dynamics approach those of the porous medium equation. The widening, compactly-supported population has edges that behave like traveling waves whose speed, density and slope we calculate. For the contracting case, the dynamics of the cumulative density approach those of Burgers' equation. We derive an analytical upper bound for the finite blow-up time after which the solution forms one or more δ-functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.