Hydrogen production through the reduction of water has emerged as an important strategy for the storage of renewable energy in chemical bonds. One attractive scenario for the construction of efficient devices for electrochemical splitting of water requires the attachment of stable and active hydrogen evolving catalysts to electrode surfaces, which remains a significant challenge. We demonstrate here the successful integration of cobalt dithiolene catalysts into a metal-organic surface to generate very active electrocatalytic cathode materials for hydrogen generation from water. These surfaces display high catalyst loadings and remarkable stability even under very acidic aqueous solutions.
Two-dimensional (2D) metal-organic frameworks (MOFs) have received a great deal of attention due to their relatively high charge carrier mobility and low resistivity. Here we report on the temperature-dependent charge transport properties of a 2D cobalt 2,3,6,7,10,11-triphenylenehexathiolate framework. Variable temperature resistivity studies reveal a transition from a semiconducting to a metallic phase with decreasing temperature, which is unprecedented in MOFs. We find this transition to be highly dependent on the film thickness and the amount of solvent trapped in the pores, with density functional theory (DFT) calculations of the electronic-structure supporting the complex metallic conductivity of the material. These results identify the first experimentally observed MOF that exhibits band-like metallic conductivity.
Metal-organic frameworks (MOFs) containing redox active linkers have led to hybrid compounds exhibiting high electrical conductivity, which enables their use in applications in electronics and electrocatalysis. While many computational studies predict two-dimensional (2D) MOFs to be metallic, the majority of experiments show decreasing conductivity on cooling, indicative of a gap in the electronic band structure. To date, only a handful of MOFs have been reported that exhibit increased electrical conductivity upon cooling indicative of a metallic character, which highlights the need for better understanding the origin of the conductivity. A 2D MOF containing iron bis(dithiolene) motifs was recently reported to exhibit semiconducting behavior with record carrier mobility. Herein, we report that high crystallinity and the elimination of guest species results in an iron 2,3,6,7,10,11-tripheylenehexathiolate (THT) MOF, FeTHT, exhibiting a complex transition from semiconducting to metallic upon cooling, similar to what was shown for the analogous CoTHT. Remarkably, exposing the FeTHT to air significantly influences the semiconducting-to-metallic transition temperature (100 to 300 K), and ultimately results in a material showing metallic-like character at, and above, room temperature. This study indicates these materials can tolerate a substantial degree of doping that ultimately results in charge delocalization and metallic-like conductivity, an important step towards enabling their use in chemiresistive sensing and optoelectronics. carriers, preventing fast charge transport through the framework. This leads to materials with insulating or large gap semiconducting behavior. 5,14,15 Efforts to reduce the barriers to charge transport have included the addition of guest species, [16][17][18] doping, [19][20][21] and variation of the metal center and its oxidation state. [22][23][24][25][26] These modifications can encourage through-space 27,28 or throughbond 29 electronic transport and have led to MOFs with improved conductivities, with one example reporting tunable conductivity over six orders of magnitude. 17 Recently, the development of MOFs with redox active linkers has led to a breakthrough in the field of electrically conductive MOFs. 11,12,15,[30][31][32][33][34] Several two-and three-dimensional (2D/3D) frameworks with planar, π-conjugated, and redox-active linkers, like semiquinones/cathecolates, [35][36][37][38][39][40][41][42][43] diimines, [44][45][46][47][48] and dithiolenes, 19,21,[48][49][50][51][52][53][54][55][56][57][58][59][60][61] have been reported to display high electrical conductivity. Yet, while computational studies often predict these 2D MOFs to be metallic, 50,[62][63][64][65] the majority of the frameworks reported display a decrease in conductivity on cooling as thermally-populated carriers are lost. In contrast, the primary mechanism for carrier scattering in metals is due to lattice vibrations that are significantly dampened at lower temperatures, resulting in more efficient transport o...
The design of earth-abundant catalysts for the electrochemical production of H from water is important for the realization of a sustainable energy future. Incorporation of molecular catalysts into extended frameworks has emerged as a viable strategy for improving catalytic performance and durability while maintaining a high degree of control over the structure and properties of the catalytic active site. Here, we investigate benzenehexathiolate (BHT) coordination frameworks as electrocatalysts for the hydrogen evolution reaction (HER) in pH 1.3 aqueous solutions. The electrocatalytic HER activity of BHT-based coordination frameworks follows the order of CoBHT > NiBHT > FeBHT. CoBHT operates at an overpotential of 185 mV, the lowest observed overpotential of the reported metal dithiolene-based metal organic frameworks and coordination polymers to date. To further understand the properties that dictate electrocatalytic activity, the effect of film thickness on the HER performance of CoBHT, a parameter that has not been extensively explored for electrocatalytic coordination frameworks, was examined. As the thickness was increased to ∼1 μm, charge and proton transfer through CoBHT was hindered, the number of electrochemically accessible active sites decreased, and the mechanical robustness of the modified electrode was diminished. The observed thickness-dependent HER activity of CoBHT highlights the importance of practical electrode construction and offers insight into how to optimize proton and electron transfer properties and active site densities within coordination frameworks without reducing the mechanical robustness of the immobilized catalysts.
The growth of crystalline compound semiconductors on amorphous and non-epitaxial substrates is a fundamental challenge for state-of-the-art thin-film epitaxial growth techniques. Direct growth of materials on technologically relevant amorphous surfaces, such as nitrides or oxides results in nanocrystalline thin films or nanowire-type structures, preventing growth and integration of high-performance devices and circuits on these surfaces. Here, we show crystalline compound semiconductors grown directly on technologically relevant amorphous and non-epitaxial substrates in geometries compatible with standard microfabrication technology. Furthermore, by removing the traditional epitaxial constraint, we demonstrate an atomically sharp lateral heterojunction between indium phosphide and tin phosphide, two materials with vastly different crystal structures, a structure that cannot be grown with standard vapor-phase growth approaches. Critically, this approach enables the growth and manufacturing of crystalline materials without requiring a nearly lattice-matched substrate, potentially impacting a wide range of fields, including electronics, photonics, and energy devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.