We undertook a prospective, randomised study using a non-invasive transcranial Doppler device to evaluate cranial embolisation in computer-assisted navigated total knee arthroplasty (n = 14) and compared this with a standard conventional surgical technique using intramedullary alignment guides (n = 10). All patients were selected randomly without the knowledge of the patient, anaesthetists (before the onset of the procedure) and ward staff. The operations were performed by a single surgeon at one hospital using a uniform surgical approach, instrumentation, technique and release sequence. The only variable in the two groups of patients was the use of single tracker pins of the imageless navigation system in the tibia and femur of the navigated group and intramedullary femoral and tibial alignment jigs in the non-navigated group. Acetabular Doppler signals were obtained in 14 patients in the computer-assisted group and nine (90%) in the conventional group, in whom high-intensity signals were detected in seven computer-assisted patients (50%) and in all of the non-navigated patients. In the computer-assisted group no patient had more than two detectable emboli, with a mean of 0.64 (SD 0.74). In the non-navigated group the number of emboli ranged from one to 43 and six patients had more than two detectable emboli, with a mean of 10.7 (sd 13.5). The difference between the two groups was highly significant using the Wilcoxon non-parametric test (p = 0.0003).Our findings show that computer-assisted total knee arthroplasty, when compared with conventional jig-based surgery, significantly reduces systemic emboli as detected by transcranial Doppler ultrasonography.
We carried out a prospective randomised study to evaluate the blood loss in 60 patients having a total knee arthroplasty and divided randomly into two equal groups, one having a computer-assisted procedure and the other a standard operation. The surgery was carried out by a single surgeon at one institution using a uniform approach. The only variable in the groups was the use of intramedullary femoral and tibial alignment jigs in the standard group and single tracker pins of the imageless navigation system in the tibia and femur in the navigated group. The mean drainage of blood was 1351 ml (715 to 2890; 95% confidence interval (CI) 1183 to 1518) in the computer-aided group and 1747 ml (1100 to 3030; CI 1581 to 1912) in the conventional group. This difference was statistically significant (p = 0.001). The mean calculated loss of haemoglobin was 36 g/dl in the navigated group versus 53 g/dl in the conventional group; this was significant at p < 0.00001. There was a highly significant reduction in blood drainage and the calculated Hb loss between the computer-assisted and the conventional techniques. This allows the ordering of less blood before the operation, reduces risks at transfusion and gives financial saving. Computer-assisted surgery may also be useful for patients in whom blood products are not acceptable.
Measurements of three-dimensional displacements in a scaffold implant under uniaxial compression have been obtained by two Digital Volume Correlation (DVC) methods, and compared with those obtained from micro-finite element models. The DVC methods were based on two approaches, a local approach which registers independent small volumes and yields discontinuous displacement fields; and a global approach where the registration is performed on the whole volume of interest, leading to continuous displacement fields. A customised mini-compression device was used to perform in situ step-wise compression of the scaffold within a micro-computed tomography (µCT) chamber, and the data were collected at steps of interest. Displacement uncertainties, ranging from 0.006 to 0.02 voxel (i.e.0.12 to 0.4 μm), with a strain uncertainty between 60 and 600 με, were obtained with a spatial resolution of 32 voxels using both approaches, although the global approach has lower systematic errors. Reduced displacement and strain uncertainties may be obtained using the global approach by increasing the element size; and using the local approach by increasing the number of intermediary sub-volumes. Good agreements between the results from the DVC measurements and the FE simulations were obtained in the primary loading direction as well as in the lateral directions. This study demonstrates that volumetric strain measurements can be obtained successfully using DVC, which may be a useful tool to investigate mechanical behaviour of porous implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.