This paper introduces integral resonant control, IRC, a simple, robust and well-performing technique for vibration control in smart structures with collocated sensors and actuators. By adding a direct feed-through to a collocated system, the transfer function can be modified from containing resonant poles followed by interlaced zeros, to zeros followed by interlaced poles. It is shown that this modification permits the direct application of integral feedback and results in good performance and stability margins. By slightly increasing the controller complexity from first to second order, low-frequency gain can be curtailed, alleviating problems due to unnecessarily high controller gain below the first mode. Experimental application to a piezoelectric laminate cantilever beam demonstrates up to 24 dB modal amplitude reduction over the first eight modes.
In this paper a broadband active shunt technique for controlling vibration in piezoelectric laminated structures is proposed. The effect of the negative capacitance controller is studied theoretically and then validated experimentally on a piezoelectric laminated simply supported plate. The 'negative capacitance controller' is similar in nature to passive shunt damping techniques, as a single piezoelectric transducer is used to dampen multiple modes. While achieving comparable performance to that of the passive shunt schemes, the negative capacitance controller has a number of advantages. It is simpler to implement, less sensitive to environmental variations and can be considered as a broadband vibration absorber.
In this study, the actuator load force of a nanopositioning stage is utilized as a feedback variable to achieve both tracking and damping. The transfer function from the applied actuator voltage to the measured load force exhibits a zero-pole ordering that greatly simplifies the design and implementation of a tracking and damping controller. Exceptional tracking and damping performance can be achieved with a simple integral controller. Other outstanding characteristics include guaranteed stability and insensitivity to changes in resonance frequency. Experimental results on a high-speed nanopositioner demonstrate an increase in the closed-loop bandwidth from 210 Hz (with an integral controller) to 2.07 kHz (with a force-feedback control). Gain margin is simultaneously improved from 5 dB to infinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.