In this paper a broadband active shunt technique for controlling vibration in piezoelectric laminated structures is proposed. The effect of the negative capacitance controller is studied theoretically and then validated experimentally on a piezoelectric laminated simply supported plate. The 'negative capacitance controller' is similar in nature to passive shunt damping techniques, as a single piezoelectric transducer is used to dampen multiple modes. While achieving comparable performance to that of the passive shunt schemes, the negative capacitance controller has a number of advantages. It is simpler to implement, less sensitive to environmental variations and can be considered as a broadband vibration absorber.
This article reports on the design and experimental characterization of an electromagnetic transducer for energy harvesting from large structures (e.g., multistory buildings and bridges), for which the power levels can be above 100 W and disturbance frequencies below 1 Hz. The transducer consists of a back-driven ballscrew coupled to a permanent-magnet synchronous machine with power harvesting regulated via control of a four-quadrant power electronic drive. Design considerations between various subsystems are illustrated and recommendations in terms of minimal values are made for each design metric. Developing control algorithms to take full advantage of the unique features of this type of transducer requires a mechanical model that can adequately characterize the device’s intrinsic nonlinear behavior. A new model is proposed that can effectively capture this behavior. Comparison with experimental results verifies that the model is accurate over a wide range of operating conditions. As such, the model can be used to assess the viability of the technology and to correctly design controllers to maximize power generation. To demonstrate the device’s energy harvesting capability, impedance matching theory is used to optimize the power generated from a base-excited tuned mass damper. Both theoretical and experimental investigations are compared and the results are shown to match closely.
Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.