For the research and development (R&D) of wave energy converters (WECs), numerical wave tanks (NWTs) provide an excellent numerical tool, enabling a cost-effective testbed for WEC experimentation, analysis and optimisation. Different methods for simulating the fluid dynamics and fluid structure interaction (FSI) within the NWT have been developed over the years, with increasing levels of fidelity, and associated computational expense. In the past, the high computational requirements largely precluded Computational Fluid Dynamics (CFD) from being applied to WEC analysis. However, the continual improvement and availability of high performance computing has led to the steady increase of CFD-based NWTs (CNWT) for WEC experiments. No attempt has yet been undertaken to comprehensively review CNWT approaches for WECs. This paper fills this gap and presents a thorough review of high-fidelity numerical modelling of WECs using CNWTs. In addition to collating the published literature, this review tries to make a step towards a best practice guideline for the applications of CFD in the field of wave energy.
Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting.
a b s t r a c tMathematical modelling of wave energy devices has many uses, including power production assessment, simulation of device motion and as a basis for model-based control design. Apart from computationally heavy approaches, such as those based on computational fluid dynamics (CFD) and smooth particle hydrodynamics (SPH), the vast majority of models employed in the simulation and analysis of wave energy converters (WECs) are based on boundary-element methods (BEMs). While BEM models have been shown to be useful, they have the inherent limitation that they are linearised around the still water level, with validity only on the immediate vicinity of this equilibrium point. In this paper, we develop a new modelling methodology, which combines the fidelity of CFD models with the computational attractiveness of BEM-type models. This flexible methodology can give representative linear models, or be extended into the nonlinear domain, as desired.
The implementation of energy-maximizing control systems (EMCSs) can significantly increase the efficiency and economic viability of resonant wave-energy converters (WECs). To achieve optimal control and drive the WEC into resonance with the incoming wave field, knowledge of the wave excitation force is required. In operational conditions, this quantity is immeasurable and, thus, has to be estimated. This article presents a critical comparison of the available excitation force estimators found in the literature. A reference measurement of the excitation force is determined using computational fluid dynamics (CFD) simulation, allowing an absolute comparison of the different estimation strategies. The estimators are compared based on the required input data, achieved accuracy, computational delay, and estimation time. In total, 11 estimation strategies are compared, with three, in particular, emerging with relatively superior performance.
Mathematical analysis is an essential tool for the successful development and operation of wave energy converters (WECs). Mathematical models of moorings systems are therefore a requisite in the overall techno-economic design and operation of floating WECs. Mooring models (MMs) can be applied to a range of areas, such as WEC simulation, performance evaluation and optimisation, control design and implementation, extreme load calculation, mooring line fatigue life evaluation, mooring design, and array layout optimisation. The mathematical modelling of mooring systems is a venture from physics to numerics, and as such, there are a broad range of details to consider when applying MMs to WEC analysis. A large body of work exists on MMs, developed within other related ocean engineering fields, due to the common requirement of mooring floating bodies, such as vessels and offshore oil and gas platforms. This paper reviews the mathematical modelling of the mooring systems for WECs, detailing the relevant material developed in other offshore industries and presenting the published usage of MMs for WEC analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.