Two hundred and ten isolations of West Nile virus (WNV) were obtained from 17 mosquito species in six genera in statewide surveillance conducted in Connecticut from June through October, 1999-2003. Culex pipiens (86), Culex salinarius (32), Culex restuans (26), Culiseta melanura (32), and Aedes vexans (12) were implicated as the most likely vectors of WNV in the region based on virus isolation data. Culex pipiens was abundant from July through September and is likely involved in early season enzootic transmission and late season epizootic amplification of the virus in wild bird populations. Epidemic transmission of WNV to humans in urban locales is probable. The abundance of Cx. restuans in June and July and isolations of WNV in early July suggest that this species may play an important role as an enzootic vector involved in early amplification of WNV virus among wild birds. Its involvement as a bridge vector to humans is unlikely. Culex salinarius was the most frequently captured Culex species and was abundant in August and September when virus activity was at its height. Frequent isolations of WNV from this species in September when the majority of human cases were reported in union with its abundance at this time of the year, demonstrated vector competence, and broad feeding habits, make Cx. salinarius a likely bridge vector to humans, horses and other mammals. Multiple isolations WNV from Cs. melanura collected in more rural locales in late August and September, provide supportive evidence to suggest that this predominant avian feeder may play a significant role in epizootic amplification of the virus among wild bird populations in these environs. Aedes vexans was the only species of Aedes or Ochlerotatus from which multiple isolations of WNV were made in more than one year and was among the most frequently trapped and abundant species throughout the season. Since Ae. vexans predominately feeds on mammals it is unlikely to play a significant role in epizootic amplification of WNV, however, because of its abundance and aggressive mammalian and human biting behavior it must receive strong consideration as a bridge vector to humans and horses. The occasional virus isolations obtained from Aedes cinereus (4), Uranotaenia sapphirina (3), Ochlerotatus canadensis (2), Ochlerotatus trivittatus (2), Ochlerotatus sollicitans (2), Ochlerotatus sticticus (2), Psorophora ferox (2), Anopheles punctipennis, Anopheles walkeri, Ochlerotatus cantator, Ochlerotatus taeniorhynchus, and Ochlerotatus triseriatus in conjunction with their inefficient vector competency and host feeding preferences indicate that these species likely play a very minor role in either the enzootic maintenance or epizootic transmission of WNV in this region. The principal foci of WNV activity in Connecticut were identified as densely populated (>3,000 people/mi2) residential communities in coastal Fairfield and New Haven Counties, and in the case of 2002, similar locales in proximity of the city of Hartford in central Hartford County. In almost all insta...
Jamestown Canyon virus (JCV) (Bunyaviridae: Orthobunyavirus) is a mosquito-borne zoonosis belonging to the California serogroup. It has a wide geographic distribution, occurring throughout much of temperate North America. White-tailed deer, Odocoileus virginianus are the principal amplification hosts, and boreal Aedes and Ochlerotatus mosquitoes are the primary vectors. A 10-year study was undertaken to identify potential mosquito vectors in Connecticut, quantify seasonal prevalence rates of infection, and define the geographic distribution of JCV in the state as a function of land use and white-tailed deer populations, which have increased substantially over this period. Jamestown Canyon virus was isolated from 22 mosquito species. Five of them, Ochlerotatus canadensis, Oc. cantator, Anopheles punctipennis, Coquillettidia perturbans, and Oc. abserratus were incriminated as the most likely vectors, based on yearly isolation frequencies and the spatial geographic distribution of infected mosquitoes. Jamestown Canyon virus was isolated from Oc. canadensis more consistently and from a greater range of collection sites than any other species. Frequent virus isolations were also made from Aedes cinereus, Aedes vexans, and Oc. sticticus, and new North American isolation records were established for Anopheles walkeri, Culex restuans, Culiseta morsitans, Oc. sticticus, Oc. taeniorhynchus, and Psorophora ferox. Other species from which JCV was isolated included C. melanura, Oc. aurifer, Oc. communis, Oc. excrucians, Oc. provocans, Oc. sollicitans, Oc. stimulans, Oc. triseriatus, and Oc. trivittatus. Jamestown Canyon virus was widely distributed throughout Connecticut and found to consistently circulate in a diverse array of mosquito vectors. Infected mosquitoes were collected from June through September, and peak infection rates paralleled mosquito abundance from mid-June through mid-July. Infection rates in mosquitoes were consistent from year to year, and overall virus activity was directly related to local mosquito abundance. Infected mosquitoes were equally distributed throughout the state, irrespective of land use, and infection rates were not directly associated with the abundance of white-tailed deer, possibly because of their saturation throughout the region.
Potassium (K؉ ) is the most abundant intracellular cation and is essential for many physiological functions of all living organisms; however, its role in the pathogenesis of human pathogens is not well understood. In this study, we characterized the functions of the bacterial Trk K ؉ transport system and external K ؉ in the pathogenesis of Salmonella enterica, a major food-borne bacterial pathogen. Here we report that Trk is important for Salmonella to invade and grow inside epithelial cells. It is also necessary for the full virulence of Salmonella in an animal infection model. Analysis of proteins of Salmonella indicated that Trk is involved in the expression and secretion of effector proteins of the type III secretion system (TTSS) encoded by Salmonella pathogenicity island 1 (SPI1) that were previously shown to be necessary for Salmonella invasion. In addition to the role of the Trk transporter in the pathogenesis of Salmonella, we discovered that external K ؉ modulates the pathogenic properties of Salmonella by increasing the expression and secretion of effector proteins of the SPI1-encoded TTSS and by enhancing epithelial cell invasion. Our studies demonstrated that K ؉ is actively involved in the pathogenesis of Salmonella and indicated that Salmonella may take advantage of the high K ؉ content inside host cells and in the intestinal fluid during diarrhea to become more virulent.
Cache Valley virus (CVV) is a mosquito-borne bunyavirus (family Bunyaviridae, genus Orthobunyavirus) that is enzootic throughout much of North and Central America. White-tailed deer (Odocoileus virginianus) have been incriminated as important reservoir and amplification hosts. CVV has been found in a diverse array of mosquito species, but the principal vectors are unknown. A 16-year study was undertaken to identify the primary mosquito vectors in Connecticut, quantify seasonal prevalence rates of infection, and define the spatial geographic distribution of CVV in the state as a function of land use and white-tailed deer populations, which have increased substantially over this period. CVV was isolated from 16 mosquito species in seven genera, almost all of which were multivoltine and mammalophilic. Anopheles (An.) punctipennis was incriminated as the most consistent and likely vector in this region on the basis of yearly isolation frequencies and the spatial geographic distribution of infected mosquitoes. Other species exhibiting frequent temporal and moderate spatial geographic patterns of virus isolation within the state included Ochlerotatus (Oc.) trivittatus, Oc. canadensis, Aedes (Ae.) vexans, and Ae. cinereus. New isolation records for CVV were established for An. walkeri, Culiseta melanura, and Oc. cantator. Other species from which CVV was isolated included An. quadrimaculatus, Coquillettidia perturbans, Culex salinarius, Oc. japonicus, Oc. sollicitans, Oc. taeniorhynchus, Oc. triseriatus, and Psorophora ferox. Mosquitoes infected with CVV were equally distributed throughout urban, suburban, and rural locales, and infection rates were not directly associated with the localized abundance of white-tailed deer, possibly due to their saturation throughout the region. Virus activity in mosquitoes was episodic with no consistent pattern from year-to-year, and fluctuations in yearly seasonal infection rates did not appear to be directly impacted by overall mosquito abundance. Virus infection in mosquitoes occurred late in the season that mostly extended from mid-August through September, when adult mosquito populations were visibly declining and were comparatively low. Findings argue for a limited role for vertical transmission for the perpetuation of CVV as occurs with other related bunyaviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.