BackgroundAdenosine triphosphate (ATP) is used as an intracellular energy source by all living organisms. It plays a central role in the respiration and metabolism, and is the most important energy supplier in many enzymatic reactions. Its critical role as the energy storage molecule makes it extremely valuable to all cells.ResultsWe report here the detection of extracellular ATP in the cultures of a variety of bacterial species. The levels of the extracellular ATP in bacterial cultures peaked around the end of the log phase and decreased in the stationary phase of growth. Extracellular ATP levels were dependent on the cellular respiration as bacterial mutants lacking cytochrome bo oxidase displayed lower extracellular ATP levels. We have also shown that Escherichia coli (E. coli) and Salmonella actively depleted extracellular ATP and an ATP supplement in culture media enhanced the stationary survival of E. coli and Salmonella. In addition to E. coli and Salmonella the presence of the extracellular ATP was observed in a variety of bacterial species that contain human pathogens such as Acinetobacter, Pseudomonas, Klebsiella and Staphylococcus.ConclusionOur results indicate that extracellular ATP is produced by many bacterial species during growth and extracellular ATP may serve a role in the bacterial physiology.
Regulated gene expression and progeny production are essential for persistent and chronic infection by human pathogens, such as hepatitis B virus (HBV), which affects >400 million people worldwide and is a major cause of liver disease. In this study, we provide the first direct evidence that a liver-specific microRNA, miR-122, binds to a highly conserved HBV pregenomic RNA sequence via base-pairing interactions and inhibits HBV gene expression and replication. The miR-122 target sequence is located at the coding region of the mRNA for the viral polymerase and the 3' untranslated region of the mRNA for the core protein. In cultured cells, HBV gene expression and replication reduces with increased expression of miR-122, and the expression of miR-122 decreases in the presence of HBV infection and replication. Furthermore, analyses of clinical samples demonstrated an inverse linear correlation in vivo between the miR-122 level and the viral loads in the peripheral blood mononuclear cells of HBV-positive patients. Our results suggest that miR-122 may down-regulate HBV replication by binding to the viral target sequence, contributing to the persistent/chronic infection of HBV, and that HBV-induced modulation of miR-122 expression may represent a mechanism to facilitate viral pathogenesis.
The kinesin superfamily (KIF) is a group of proteins that share a highly conserved motor domain. Except for some members, many KIF proteins have adenosine triphosphatase activity and microtubule‐dependent plus‐end motion ability. Kinesins participate in several essential cellular functions, including mitosis, meiosis and the transport of macromolecules. Increasing evidence indicates kinesin proteins play critical roles in the genesis and development of human cancers. Some kinesin proteins are associated with maligancy as well as drug resistance of solid tumor. Thus, targeting KIF therapy seems to be a promising anticancer strategy. Inhibitors of KIF such as kinesin spindle protein (KSP/Eg5) have entered clinical trials for monotherapy or in combination with other drugs, and kinesins other than Eg5 with various potential anticancer target characteristics are also constantly being discovered and studied. Here, we summarize the oncogenic roles of kinesin proteins and potential cancer therapy strategies that target KIF.
Global epidemic studies have suggested that coffee consumption is reversely correlated with the incidence of type 2 diabetes mellitus (T2DM), a metabolic disease. The misfolding of human islet amyloid polypeptide (hIAPP) is regarded as one of the causative factors of T2DM. Coffee extracts have three major active components: caffeine, caffeic acid (CA), and chlorogenic acid (CGA). In this study, the effects of these major coffee components, as well as dihydrocaffeic acid (DHCA) (a major metabolite of CGA and CA), on the amyloidogenicity of hIAPP were investigated by thioflavin-T based fluorescence emission, transmission electronic microscopy, circular dichroism, light-induced cross-linking, dynamic light scattering, and MTT-based cell viability assays. The results suggest that all components show varied inhibitory effects on the formation of toxic hIAPP amyloids, in which CA shows the highest potency in delaying the conformational transition of the hIAPP molecule with the most prolonged lag time, whereas caffeine shows the lowest potency. At a 5-fold excess molar ratio of compound to hIAPP, all coffee-derived compounds affect the secondary structures of incubated hIAPP as suggested by the circular dichroism spectra and CDPro deconvolution analysis. Further photoinduced cross-linking based oligomerization and dynamic light scattering studies suggested CA and CGA significantly suppressed the formation of hIAPP oligomers, whereas caffeine showed no significant effect on oligomerization. Cell protection effects were also observed for all three compounds, with the protection efficiency being greatest for CA and least for CGA. These findings suggest that the beneficial effects of coffee consumption on T2DM may be partly due to the ability of the major coffee components and metabolites to inhibit the toxic aggregation of hIAPP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.