Owners of camelids in poor body condition should be forewarned that such animals are at greater risk for complications following dental surgery. Clinicians should recognize that the number of teeth affected was not associated with a poorer outcome.
Background
Surgical management of long segment tracheal disease is limited by a paucity of donor tissue and poor performance of synthetic materials. A potential solution is the development of a tissue-engineered tracheal graft (TETG), which promises an autologous airway conduit with growth capacity.
Methods
We created a TETG by vacuum seeding bone marrow-derived mononuclear cells (BM-MNCs) on a polymeric nanofiber scaffold. First, we evaluated the role of scaffold porosity on cell seeding efficiency in vitro. We then determined the effect of cell seeding on graft performance in vivo using an ovine model.
Results
Seeding efficiency of normal porosity (NP) grafts was significantly increased when compared to high porosity (HP) grafts (NP: 360.3 ± 69.19 ×103 cells/mm2; HP: 133.7 ± 22.73 ×103 cells/mm2; p<0.004). Lambs received unseeded (n=2) or seeded (n=3) NP scaffolds as tracheal interposition grafts for 6 weeks. Three animals were terminated early due to respiratory complications (n=2 unseeded, n=1 seeded). Seeded TETG explants demonstrated wound healing, epithelial migration, and delayed stenosis when compared to their unseeded counterparts.
Conclusion
Vacuum seeding BM-MNCs on nanofiber scaffolds for immediate implantation as tracheal interposition grafts is a viable approach to generate TETGs, but further preclinical research is warranted before advocating this technology for clinical application.
Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PdCV) cause indistinguishable clinical signs and pathological changes in swine. Here we investigated the antigenic relationship between PEDV and PdCV. We provide the first evidence that conserved epitope(s) on the respective viral nucleocapsid proteins cross-react with each other although virus neutralization cross-reactivity was not observed. As a practical matter, prevention of these two very similar diseases of swine will require the development of separate virus-specific vaccine products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.