Background Surgical management of long segment tracheal disease is limited by a paucity of donor tissue and poor performance of synthetic materials. A potential solution is the development of a tissue-engineered tracheal graft (TETG), which promises an autologous airway conduit with growth capacity. Methods We created a TETG by vacuum seeding bone marrow-derived mononuclear cells (BM-MNCs) on a polymeric nanofiber scaffold. First, we evaluated the role of scaffold porosity on cell seeding efficiency in vitro. We then determined the effect of cell seeding on graft performance in vivo using an ovine model. Results Seeding efficiency of normal porosity (NP) grafts was significantly increased when compared to high porosity (HP) grafts (NP: 360.3 ± 69.19 ×103 cells/mm2; HP: 133.7 ± 22.73 ×103 cells/mm2; p<0.004). Lambs received unseeded (n=2) or seeded (n=3) NP scaffolds as tracheal interposition grafts for 6 weeks. Three animals were terminated early due to respiratory complications (n=2 unseeded, n=1 seeded). Seeded TETG explants demonstrated wound healing, epithelial migration, and delayed stenosis when compared to their unseeded counterparts. Conclusion Vacuum seeding BM-MNCs on nanofiber scaffolds for immediate implantation as tracheal interposition grafts is a viable approach to generate TETGs, but further preclinical research is warranted before advocating this technology for clinical application.
Microporous scaffolds designed to improve bony repair have had limited success; therefore, we sought to evaluate whether time-released porous scaffolds with or without recombinant bone morphogenetic protein 2 (rhBMP-2) could enhance stem cell osteoinduction. Custom-made 15/85 hydroxyapatite/β-tricalcium phosphate scaffolds were left empty (E) or filled with rhBMP-2 (E+), calcium sulfate (CS), or CS and rhBMP-2 (CS+). All scaffolds were placed in media and weighed daily. Conditioned supernatant was analyzed for rhBMP-2 and then used to feed human adipose-derived mesenchymal stem cells (ASCs). Adipose-derived mesenchymal stem cell ALP activity, OSTERIX expression, and bone nodule formation were determined. E scaffolds retained 97% (SD, 2%) of the initial weight, whereas CS scaffolds had a near-linear 30% (SD, 3%) decrease over 60 days. E+ scaffolds released 155 (SD, 5) ng of rhBMP-2 (77%) by day 2. In contrast, CS+ scaffolds released only 30 (SD, 2) ng (10%) by day 2, and the remaining rhBMP-2 was released over 20 days. Conditioned media from E+ scaffolds stimulated the highest ALP activity and OSTERIX expression in ACSs on day 2. However, after day 6, media from CS+ scaffolds stimulated the highest ALP activity and OSTERIX expression in ASCs. Adipose-derived mesenchymal stem cells exposed to day 8 CS+-conditioned media produced significantly more bone nodules (10.1 [SD, 1.7] nodules per high-power field) than all other scaffolds. Interestingly, day 8 conditioned media from CS scaffolds simulated significantly more bone nodules than either E or E+ scaffold (P < 0.05 for both). Time-released hydroxyapatite/β-tricalcium phosphate porosity provides sustained growth factor release, enhances ASC osteoinduction, and may result in better in vivo bone formation.
A patient developed Candida albicans endocarditis and fungemia after undergoing aortic valve replacement with an allograft. The allograft had been found during tissue bank processing to be contaminated with C. albicans, but it was culture-negative for C. albicans after routine disinfection with an antifungal-containing antimicrobial solution. Comparison of the preimplantation and postimplantation C. albicans isolates revealed remarkable genetic similarity, but antifungal susceptibility testing showed that the postimplantation isolate was more resistant to fluconazole and amphotericin B than the preimplantation isolate, suggesting emergence of resistance after disinfection. Implantation of a contaminated heart valve allograft can occur despite disinfection during processing and can result in endocarditis in the recipient. Antimicrobial disinfection protocols that include antifungal drugs may be ineffective. Current U.S. Food and Drug Administration regulations do not require companies to specify details concerning allograft processing. Additional measures may be required to prevent tissue bank release of allografts contaminated with C. albicans or other pathogens.
Patients who undergo implantation of a tissue-engineered vascular graft (TEVG) for congenital cardiac anomalies are monitored with echocardiography, followed by magnetic resonance imaging or angiography when indicated. While these methods provide data regarding the lumen, minimal information regarding neotissue formation is obtained. Intravascular ultrasound (IVUS) has previously been used in a variety of conditions to evaluate the vessel wall. The purpose of this study was to evaluate the utility of IVUS for evaluation of TEVGs in our ovine model. Eight sheep underwent implantation of TEVGs either unseeded or seeded with bone marrow-derived mononuclear cells. Angiography, IVUS, and histology were directly compared. Endothelium, media, and graft were identifiable on IVUS and histology at multiple time points. There was strong agreement between IVUS and angiography for evaluation of luminal diameter. IVUS offers a valuable tool to evaluate the changes within TEVGs, and clinical translation of this application is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.