The effect of film cooling on a high pressure turbine blade with an open squealer tip has been examined in a high speed linear cascade. The cascade operates at engine realistic Mach and Reynolds numbers, producing transonic flow conditions over the blade tip. Tests have been performed on two uncooled tip geometries with differing pressure side rim edge radii, and a cooled tip matching one of the uncooled cases. The pressure sensitive paint technique has been used to measure adiabatic film cooling effectiveness on the blade tip at a range of tip gaps and coolant mass flow rates. Complementary tip heat transfer coefficients (HTC) have been measured using transient infrared thermography, and the effects of the coolant film on the tip heat transfer and engine heat flux examined. The uncooled data show that the tip heat transfer coefficient distribution is governed by the nature of flow reattachments and impingements. The squealer tip can be broken down into three regions, each exhibiting a distinct response to a change in the tip gap, depending on the local behaviour of the overtip leakage flow. The edge radius of the pressure side rim causes the overtip leakage flow to change dramatically at low clearance. Complementary CFD shows that the addition of casing motion causes no further change on the pressure side rim. Injected coolant interacts with the overtip leakage flow, which can locally enhance the tip heat transfer coefficient compared to the uncooled tip. The film effectiveness is dependent on both the coolant mass flow rate and tip clearance. At increased coolant mass flow, areas of high film effectiveness on the pressure side rim coincide strongly with a net heat flux reduction and in the subsonic tip region with low heat transfer coefficient.
The effect of film cooling on a transonic squealer tip has been examined in a high speed linear cascade, which operates at engine-realistic Mach and Reynolds numbers. Tests have been performed on two uncooled tip geometries with differing pressure side rim edge radii, and a cooled tip matching one of the uncooled cases. The pressure sensitive paint technique has been used to measure adiabatic film cooling effectiveness on the blade tip at a range of tip gaps and coolant mass flow rates. Complementary tip heat transfer coefficients have been measured using transient infrared thermography, and the effects of the coolant film on the tip heat transfer and engine heat flux were examined. The uncooled data show that the tip heat transfer coefficient distribution is governed by the nature of flow reattachments and impingements. The squealer tip can be broken down into three regions, each exhibiting a distinct response to a change in the tip gap, depending on the local behavior of the overtip leakage flow. Complementary computational fluid dynamics (CFD) shows that the addition of casing motion causes no change in the flow over the pressure side rim. Injected coolant interacts with the overtip leakage flow, which can locally enhance the tip heat transfer coefficient. The film effectiveness is dependent on both the coolant mass flow rate and tip clearance. At increased coolant mass flow, areas of high film effectiveness on the pressure side rim coincide strongly with a net heat flux reduction and in the subsonic tip region with low heat transfer coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.