Plasmodium falciparum vaccine RTS,S/AS01 is based on the major NPNA repeat and the C-terminal region of the circumsporozoite protein (CSP). RTS,S-induced NPNA-specific antibody titer and avidity have been associated with high-level protection in naïve subjects, but efficacy and longevity in target populations is relatively low. In an effort to improve upon RTS,S, a minimal repeat-only, epitope-focused, protective, malaria vaccine was designed. Repeat antigen copy number and flexibility was optimized using the tobacco mosaic virus (TMV) display platform. Comparing antigenicity of TMV displaying 3 to 20 copies of NPNA revealed that low copy number can reduce the abundance of low-affinity monoclonal antibody (mAb) epitopes while retaining high-affinity mAb epitopes. TMV presentation improved titer and avidity of repeat-specific Abs compared to a nearly full-length protein vaccine (FL-CSP). NPNAx5 antigen displayed as a loop on the TMV particle was found to be most optimal and its efficacy could be further augmented by combination with a human-use adjuvant ALFQ that contains immune-stimulators. These data were confirmed in rhesus macaques where a low dose of TMV-NPNAx5 elicited Abs that persisted at functional levels for up to 11 mo. We show here a complex association between NPNA copy number, flexibility, antigenicity, immunogenicity, and efficacy of CSP-based vaccines. We hypothesize that designing minimal epitope CSP vaccines could confer better and more durable protection against malaria. Preclinical data presented here supports the evaluation of TMV-NPNAx5/ALFQ in human trials.
The elevated plus maze (EPM) is routinely used in neuroscience research to evaluate emotional behavior in rodents by measuring general exploratory performance and avoidance of the aversive open arms of the maze. According to standard practice, behavior on the EPM is evaluated during a single trial to avoid the possibility of habituation to the apparatus that would result in lost sensitivity of key outcome measures. However, this possibility has not been systematically evaluated across repeated trials or across different environmental conditions. In the current study, we assessed within-subject behavior on the EPM in adult male rats over thirteen trials (tested twice weekly) repeated under identical conditions. We also assessed within-subject behavior on the EPM in adult male rats under dim (1 lux in the closed arm) and lit (246 lux in the closed arm) environmental conditions. We found that measures of general performance (basic movements and total distanced travelled throughout the maze) were stable across repeated trials and environmental conditions. We found that measures of open arm avoidance (distance travelled in, time spent in and entries in to the open arm) varied across trials and environmental conditions and were sensitive to the lighting conditions of the initial test. Though measures of open arm avoidance did show a linear trend indicative of habituation across repeated trials, this effect was variable across trials. Notably, preference for the open arm over the closed arm (measured as % of time spent in the open arm) assessed among individual animals occurred rarely and was never observed on the group level across the thirteen repeated trials. Together, these data demonstrate that measures of general performance such as basic movements and total distance traveled are robust to repeated testing and changing environmental lighting conditions. In contrast, measures of open arm avoidance show habituation with repeated testing and are sensitive to changing environmental lighting conditions. Based on these results, we suggest that within-subjects repeated testing on the EPM is valid in well-controlled studies that include an untreated control group to account for inter-trial variability and habituation.
BACKGROUND: Partial resuscitative endovascular balloon occlusion of the aorta (pREBOA) attempts to minimize ischemia/reperfusion injury while controlling hemorrhage. There are little data on optimal methods to evaluate and titrate partial flow, which typically requires invasive arterial line monitoring. We sought to examine the use of a miniaturized handheld digital pressure device (COMPASS; Mirador Biomedical, Seattle, WA) for pREBOA placement and titration of flow. METHODS:Ten swine underwent standardized hemorrhagic shock. Carotid and iliac pressures were monitored with both arterial line and COMPASS devices, and flow was monitored by aortic and superior mesenteric artery flow probes. Partial resuscitative endovascular balloon occlusion of the aorta was inflated to control hemorrhage for 15 minutes before being deflated to try targeting aortic flow of 0.7 L/min (using only the COMPASS device) by an operator blinded to the arterial line pressures and aortic flow. Correlations between COMPASS and proximal/ distal arterial line were evaluated, as well as actual aortic flow. RESULTS:There was strong correlation between the distal mean arterial pressure (MAP) and the distal COMPASS MAP (r = 0.979, p < 0.01), as well as between the proximal arterial line and the proximal COMPASS on the pREBOA (r = 0.989, p < 0.01). There was a significant but weaker correlation between the distal compass MAP reading and aortic flow (r = 0.47, p < 0.0001), although it was not clinically significant and predicted flow was not achieved in a majority of the procedures. Of 10 pigs, survival times ranged from 10 to 120 minutes, with a mean survival of 50 minutes, and 1 pig surviving to 120 minutes. CONCLUSION: Highly reliable pressure monitoring is achieved proximally and distally without arterial lines using the COMPASS device on the pREBOA.Despite accurate readings, distal MAPs were a poor indicator of aortic flow, and titration based upon distal MAPs did not provide reliable results. Further investigation will be required to find a suitable proxy for targeting specific aortic flow levels using pREBOA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.