Genomic selection (GS) is being increasingly adopted by the tree breeding community. Most of the GS studies in trees are focused on estimating additive genetic effects. Exploiting the dominance effects offers additional opportunities to improve genetic gain. To detect dominance effects, trait-relevant markers may be important compared to nonselected markers. Here, we used preselected markers to study the dominance effects in a Eucalyptus nitens (E. nitens) breeding population consisting of open-pollinated (OP) and controlled-pollinated (CP) families. We used 8221 trees from six progeny trials in this study. Of these, 868 progeny and 255 parents were genotyped with the E. nitens marker panel. Three traits; diameter at breast height (DBH), wood basic density (DEN), and kraft pulp yield (KPY) were analyzed. Two types of genomic relationship matrices based on identity-by-state (IBS) and identity-by-descent (IBD) were tested. Performance of the genomic best linear unbiased prediction (GBLUP) models with IBS and IBD matrices were compared with pedigree-based additive best linear unbiased prediction (ABLUP) models with and without the pedigree reconstruction. Similarly, the performance of the single-step GBLUP (ssGBLUP) with IBS and IBD matrices were compared with ABLUP models using all 8221 trees. Significant dominance effects were observed with the GBLUP-AD model for DBH. The predictive ability of DBH is higher with the GBLUP-AD model compared to other models. Similarly, the prediction accuracy of genotypic values is higher with GBLUP-AD compared to the GBLUP-A model. Among the two GBLUP models (IBS and IBD), no differences were observed in predictive abilities and prediction accuracies. While the estimates of predictive ability with additive effects were similar among all four models, prediction accuracies of ABLUP were lower than the GBLUP models. The prediction accuracy of ssGBLUP-IBD is higher than the other three models while the theoretical accuracy of ssGBLUP-IBS is consistently higher than the other three models across all three groups tested (parents, genotyped, and nongenotyped). Significant inbreeding depression was observed for DBH and KPY. While there is a linear relationship between inbreeding and DBH, the relationship between inbreeding and KPY is nonlinear and quadratic. These results indicate that the inbreeding depression of DBH is mainly due to directional dominance while in KPY it may be due to epistasis. Inbreeding depression may be the main source of the observed dominance effects in DBH. The significant dominance effect observed for DBH may be used to select complementary parents to improve the genetic merit of the progeny in E. nitens.
Basic density is a fundamental wood property of pulp and sawn wood. An IML Resi PD 400 drilling resistance tool (IML System GmbH, Wiesloch, Germany) was used to evaluate the basic density of Eucalyptus nitens discs and the impact of needle friction on basic density prediction. To determine the accuracy of that prediction with the commonly used linear drill bit shaft friction correction and determine whether this correction is linear, 40 discs were drilled radially, then cut into segments which were measured for basic density. Drilling resistance had a strong relationship with basic density in the outer wood; it was weaker at the pith but this did not compromise prediction accuracy. When using a linear friction correction, the drilling resistance underpredicts basic density by 7.6% in the first 2–3 cm after stem entry, after which the prediction error ranged from 0.6–1.9%. The friction correction was found to be nonlinear, especially at the first few centimeters. To apply this friction correction, basic density values from the model should be added to predict basic density values until 2.9 cm from Resi entry point and after that subtracted to account for the drill bit shaft friction.
Thermo-hydro mechanical (THM) treatments and thermo-treatments are used to improve the properties of wood species and enhance their uses without the application of chemicals. This work investigates and compares the effects of THM treatments on three timber species from Tasmania, Australia; plantation fibre-grown shining gum (Eucalyptus nitens H. Deane and Maiden), plantation saw-log radiata pine (Pinus radiata D. Don) and native-grown saw-log timber of the common name Tasmanian oak (which can be any of E. regnans F. Muell, E. obliqua L’Hér and E. delegatensis L’Hér). Thin lamellae were compressed by means of THM treatment from 8 mm to a target final thickness of 5 mm to investigate the suitability for using THM-treated lamellas in engineered wood products. The springback, mass loss, set-recovery after soaking, dimensional changes, mechanical properties, and Brinell hardness were used to evaluate the effects of the treatment on the properties of the species. The results show a marked increase in density for all three species, with the largest increase presented by E. nitens (+53%) and the smallest by Tasmanian oak (+41%). E. nitens displayed improvements both in stiffness and strength, while stiffness decreased in P. radiata samples and strength in Tasmanian oak samples. E. nitens also displayed the largest improvement in hardness (+94%) with respect to untreated samples. P. radiata presented the largest springback whilst having the least mass loss. E. nitens and Tasmanian oak showed similar dimensional changes, whilst P. radiata timber had the largest thickness swelling and set-recovery due to the high water absorption (99%). This study reported the effects of THM treatments in less-known and commercially important timber species, demonstrating that the wood properties of a fibre-grown timber can be improved through the treatments, potentially increasing the utilisation of E. nitens for structural and higher quality timber applications.
In his influential discussion of early Christian ascetic renunciation, Peter Brown announced that “Christian men used women ‘to think with’ in order to verbalize their own nagging concern with the stance that the Church should take with the world.” Brown's statement encapsulates the particular difficulties facing students of the history of women in the early Christian period. The most basic difficulty is that we possess very few texts by women from this period until well into the Middle Ages. We can point to the diary of the third-century martyr Perpetua, the complex and recondite Vergilian and Homeric centos (“stitch-verses”) of the aristocrat Proba and the empress Eudocia, and perhaps one or two other arguable examples. With a dearth of women's own voices, can historians be expected to reconstruct women's lives? This paucity of “first-person” texts is coupled with a more serious theoretical difficulty facing historians of all periods whose main “evidence” consists of literary and rhetorically informed texts. Scholars are much less confident today in our ability to peel back layers of male rhetoric and find the “real” woman concealed underneath. Brown's comment underscores this rhetorical skepticism by asking whether these texts are even “about” women at all. Others following Brown's lead have understood texts that are ostensibly to or about women as concerned primarily with issues of male authority and identity. In Brown's words, women were good “to think with,” but the subject of that “thought” was inevitably male. Despite these technical and theoretical difficulties, however, I do not think we are witnessing the final and absolute erasure of women from ancient Christian history.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.