Early in the next century, several space missions are planned with the goal of landing craft on asteroids, comets, the Moon, and Mars. To increase the scientific return of these missions, new methods are needed to provide (1) significantly more analyses per mission lifetime, and (2) expanded analytical capabilities. One method that has the potential to meet both of these needs for the elemental analysis of geological samples is laser-induced breakdown spectroscopy (LIBS). These capabilities are possible because the laser plasma provides rapid analysis and the laser pulse can be focused on a remotely located sample to perform a stand-off measurement. Stand-off is defined as a distance up to 20 m between the target and laser. Here we present the results of a characterization of LIBS for the stand-off analysis of soils at reduced air pressures and in a simulated Martian atmosphere (5–7 torr pressure of CO2) showing the feasibility of LIBS for space exploration. For example, it is demonstrated that an analytically useful laser plasma can be generated at distances up to 19 m by using only 35 mJ/pulse from a compact laser. Some characteristics of the laser plasma at reduced pressure were also investigated. Temporally and spectrally resolved imaging showed significant changes in the plasma as the pressure was reduced and also showed that the analyte signals and mass ablated from a target were strongly dependent on pressure. As the pressure decreased from 590 torr to the 40–100 torr range, the signals increased by a factor of about 3–4, and as the pressure was further reduced the signals decreased. This behavior can be explained by pressure-dependent changes in the mass of material vaporized and the frequency of collisions between species in the plasma. Changes in the temperature and the electron density of the plasmas with pressure were also examined and detection limits for selected elements were determined.
The implementation of hand-held ion mobility spectrometers (IMS) requires the development and evaluation of miniature drift cells providing high sensitivity while maintaining reasonable resolution. This manuscript describes the construction of a miniature IMS designed for such an application and its characterization by evaluation of the detection limits and resolution of the system with seven explosive compounds including trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX), pentaerythritol tetranitrate (PETN), 2,4,6-trinitrophenyl-N-methylnitramine (Tetryl), nitroglycerin (NG), 2,4-dinitrotoluene (2,4 DNT), and 2,6-dinitrotoluene (2,6 DNT).
ARA is currently developing technologies to improve food safety and food defense preparedness. One technology is Laser-Induced Breakdown Spectroscopy (LIBS), a tool developed by ARA for detecting pathogens in food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.