Clinical chelation therapy of mercury poisoning generally uses one or both of two drugs--meso-dimercaptosuccinic acid (DMSA) and dimercaptopropanesulfonic acid (DMPS), commercially sold as Chemet and Dimaval, respectively. We have used a combination of mercury L(III)-edge X-ray absorption spectroscopy and density functional theory calculations to investigate the chemistry of interaction of mercuric ions with each of these chelation therapy drugs. We show that neither DMSA nor DMPS forms a true chelate complex with mercuric ions and that these drugs should be considered suboptimal for their clinical task of binding mercuric ions. We discuss the design criteria for a mercuric specific chelator molecule or "custom chelator", which might form the basis for an improved clinical treatment.
An arsenic±selenium metabolite that exhibited the same arsenic and selenium X-ray absorption nearedge spectra as the synthetic seleno-bis(S-glutathionyl) arsinium ion [(GS) 2 AsSe]À was recently detected in rabbit bile within 25 min after intravenous injection of rabbits with sodium selenite and sodium arsenite. X-ray absorption spectroscopy did not (and cannot) conclusively identify the sulfurdonor in the in vivo sample. After similar treatment of rabbits, we analyzed the collected bile samples by size-exclusion chromatography (SEC) using inductively coupled plasma atomic emission spectroscopy (ICP-AES) to monitor arsenic, selenium and sulfur simultaneously. The bulk of arsenic and selenium eluted in a single peak, the intensity of which was greatly increased upon spiking of the bile samples with synthethic [(GS) 2 AsSe] À . Hence, we identify [(GS) 2 AsSe] À as the major metabolite in bile after exposure of rabbits to selenite and arsenite. The reported SEC±ICP-AES method is the first chromatographic procedure to identify this biochemically important metabolite in biological fluids and is thus a true alternative to X-ray absorption spectroscopy, which is not available to many chemists.
A novel arsenic-selenium solution species was synthesized by reacting equimolar sodium selenite and sodium dimethylarsinate with 10 mol equiv of glutathione (pH 7.5) in aqueous solution. The solution species showed a single (77)Se NMR resonance at 112.8 ppm. Size-exclusion chromatography (SEC) using an inductively coupled plasma atomic emission spectrometer (ICP-AES) as the simultaneous arsenic-, selenium-, sulfur-, and carbon-specific detector revealed an arsenic-selenium moiety with an As:Se molar ratio of 1:2. Electrospray ionization mass spectrometry (ESI-MS) of the chromatographically purified compound showed a molecular mass peak at m/z 263 in the negative ion mode. Fragmentation of the parent ion (ESI-MS-MS) produced (CH(3))(2)As(-) and Se(2)(-) fragments. Arsenic and selenium extended X-ray absorption fine structure spectroscopy (EXAFS) of the purified species revealed two As-C interactions at 1.943 A and two As-Se interactions at 2.279 A. On the basis of these results this novel solution species is identified as the dimethyldiselenoarsinate anion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.