Pertinent issues of collagen antigenicity and immunogenicity are concisely reviewed as they relate to the design and application of biomedical devices. A brief discussion of the fundamental concepts of collagen immunochemistry is presented, with a subsequent review of documented clinical responses to devices containing reconstituted soluble or solubilized collagen. The significance of atelocollagen, concerns regarding collagen-induced autoimmunity, and other relevant topics are also addressed in the context of current understanding of the human immune response to collagen.
There is a need to improve current treatments for articular cartilage injuries. This article is the third in a series describing the design and development of an osteochondral scaffold based on collagen-glycosaminoglycan and calcium phosphate technologies for regenerative repair of articular cartilage defects. The previous articles in this series described methods for producing porous, three-dimensional mineralized collagen-GAG (CGCaP) scaffolds whose composition can be reproducibly varied to mimic the composition of subchondral bone, and pore microstructure and mineral phase can be modified. This article describes a method, "liquid-phase cosynthesis," that enables the production of porous, layered scaffolds that mimic the composition and structure of articular cartilage on one side, subchondral bone on the other side, and the continuous, gradual or "soft" interface between these tissues: the tidemark of articular joints. This design enables the layered scaffolds to be inserted into the subchondral bone at an osteochondral defect site without the need for sutures, glue, or screws, with a highly interconnected porous network throughout the entire osteochondral defect. Moreover, the differential moduli of the osseous and cartilaginous compartments enable these layered scaffolds to exhibit compressive deformation behavior that mimics the behavior observed in natural articular joints.
This paper is the second in a series of papers describing the design and development of an osteochondral scaffold using collagen-glycosaminoglycan and calcium phosphate technologies engineered for the regenerative repair of articular cartilage defects. The previous paper described a technology (concurrent mapping) for systematic variation and control of the chemical composition of triple coprecipitated collagen, glycosaminoglycan, and calcium phosphate (CGCaP) nanocomposites without using titrants. This paper describes (1) fabricating porous, three-dimensional scaffolds from the CGCaP suspensions, (2) characterizing the microstructure and mechanical properties of such scaffolds, and (3) modifying the calcium phosphate mineral phase. The methods build on the previously demonstrated ability to vary the composition of a CGCaP suspension (calcium phosphate mass fraction between 0 and 80 wt %) and enable the production of scaffolds whose pore architecture (mean pore size: 50-1000 microm), CaP phase chemistry (brushite, octacalcium phosphate, apatite) and crosslinking density (therefore mechanical properties and degradation rate) can be independently controlled. The scaffolds described in this paper combine the desirable biochemical properties and pore architecture of porous collagen-glycosaminoglycan scaffolds with the strength and direct bone-bonding properties of calcium phosphate biomaterials in a manner that can be tailored to meet the demands of a range of applications in orthopedics and regenerative medicine.
This is the first in a series of articles that describe the design and development of a family of osteochondral scaffolds based on collagen-glycosaminoglycan (collagen-GAG) and calcium phosphate technologies, engineered for the regenerative repair of defects in articular cartilage. The osteochondral scaffolds consist of two layers: a mineralized type I collagen-GAG scaffold designed to regenerate the underlying subchondral bone and a nonmineralized type II collagen-GAG scaffold designed to regenerate cartilage. The subsequent articles in this series describe the fabrication and properties of a mineralized scaffold as well as a two-layer (one mineralized, the other not) osteochondral scaffold for regeneration of the underlying bone and cartilage, respectively. This article describes a technology through which the chemical composition-particularly the calcium phosphate mass fraction-of triple coprecipitated nanocomposites of collagen, glycosaminoglycan, and calcium phosphate can be accurately and reproducibly varied without the need for titrants or other additives. Here, we describe how the mineral:organic ratio can be altered over a range that includes that for articular cartilage (0 wt % mineral) and for bone (75 wt % mineral). This technology achieves the objective of mimicking the composition of two main tissue types found in articular joints, with particular emphasis on the osseous compartment of an osteochondral scaffold. Exclusion of titrants avoids the formation of potentially harmful contaminant phases during freeze-drying steps crucial for scaffold fabrication, ensuring that the potential for binding growth factors and drugs is maintained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.