The existence of a hematopoietic stem cell niche as a spatially confined regulatory entity relies on the notion that hematopoietic stem and progenitor cells (HSPCs) are strategically positioned in unique bone marrow (BM) microenvironments with defined anatomical and functional features. Here, we employ a powerful imaging cytometry platform to perform a comprehensive quantitative analysis of HSPC distribution in BM cavities of femoral bones. We find that HSPCs preferentially localize in endosteal zones, where the majority closely interacts with sinusoidal and non-sinusoidal BM microvessels, which form a distinctive circulatory system. In situ tissue analysis reveals that HSPCs exhibit a hypoxic profile, defined by strong retention of pimonidazole and expression of HIF-1α, regardless of localization throughout the BM, adjacency to vascular structures or cell cycle status. These studies argue that the characteristic hypoxic state of HSPCs is not solely the result of a minimally oxygenated niche but may be partially regulated by cell-specific mechanisms.
Current surgical and tissue engineering approaches for treating tendon injuries have shown limited success, suggesting the need for new biomaterial strategies. Here we describe the development of an anisotropic collagen-glycosaminoglycan (CG) scaffold and use of growth factor supplementation strategies to create a 3D platform for tendon tissue engineering. We fabricated cylindrical CG scaffolds with aligned tracks of ellipsoidal pores that mimic the native physiology of tendon by incorporating a directional solidification step into a conventional lyophilization strategy. By modifying the freezing temperature, we created a homologous series of aligned CG scaffolds with constant relative density and degree of anisotropy but a range of pore sizes (55–243 μm). Equine tendon cells showed greater levels of attachment, metabolic activity, and alignment as well as less cell-mediated scaffold contraction, when cultured in anisotropic scaffolds compared to an isotropic CG scaffold control. The anisotropic CG scaffolds also provided critical contact guidance cues for cell alignment. While tendon cells were randomly oriented in the isotropic control scaffold and the transverse (unaligned) plane of the anisotropic scaffolds, significant cell alignment was observed in the direction of the contact guidance cues in the longitudinal plane of the anisotropic scaffolds. Scaffold pore size was found to significantly influence tendon cell viability, proliferation, penetration into the scaffold, and metabolic activity in a manner predicted by cellular solids arguments. Finally, the addition of the growth factors PDGF-BB and IGF-1 to aligned CG scaffolds was found to enhance tendon cell motility, viability, and metabolic activity in dose-dependent manners. This work suggests a composite strategy for developing bioactive, 3D material systems for tendon tissue engineering.
Cell migration plays a critical role in a wide variety of physiological and pathological phenomena as well as in scaffold-based tissue engineering. Cell migration behavior is known to be governed by biochemical stimuli and cellular interactions. Biophysical processes associated with interactions between the cell and its surrounding extracellular matrix may also play a significant role in regulating migration. Although biophysical properties of two-dimensional substrates have been shown to significantly influence cell migration, elucidating factors governing migration in a three-dimensional environment is a relatively new avenue of research. Here, we investigate the effect of the three-dimensional microstructure, specifically the pore size and Young's modulus, of collagen-glycosaminoglycan scaffolds on the migratory behavior of individual mouse fibroblasts. We observe that the fibroblast migration, characterized by motile fraction as well as locomotion speed, decreases as scaffold pore size increases across a range from 90 to 150 mum. Directly testing the effects of varying strut Young's modulus on cell motility showed a biphasic relationship between cell speed and strut modulus and also indicated that mechanical factors were not responsible for the observed effect of scaffold pore size on cell motility. Instead, in-depth analysis of cell locomotion paths revealed that the distribution of junction points between scaffold struts strongly modulates motility. Strut junction interactions affect local directional persistence as well as cell speed at and away from the junctions, providing a new biophysical mechanism for the governance of cell motility by the extracellular microstructure.
Adult mesenchymal stem cells have the proclivity to differentiate along multiple lineages giving rise to new bone, cartilage, muscle, or fat. Collagen, a normal constituent of bone, provides strength and structural stability and is therefore a potential candidate for use as a substrate on which to engineer bone and cartilage from their respective mesenchymal-derived precursors. In this study, a collagen- glycosaminoglycan scaffold was used to provide a suitable three-dimensional (3-D) environment on which to culture adult rat mesenchymal stem cells and induce differentiation along the osteogenic and chondrogenic lineages. The results demonstrate that adult rat mesenchymal stem cells can undergo osteogenesis when grown on the collagen-glycosaminoglycan scaffold and stimulated with osteogenic factors (dexamethasone, ascorbic acid, beta-glycerophosphate), as evaluated by the temporal induction of the bone-specific proteins, collagen I and osteocalcin, and subsequent matrix mineralization. The osteogenic factors were coupled to activation of the extracellular-regulated protein kinase (ERK), and this kinase was found to play a role in the osteogenic process. As well as supporting osteogenesis, when the cell-seeded scaffold was exposed to chondrogenic factors (dexamethasone and TGF-1beta), collagen II immunoreactivity was increased, providing evidence that the scaffold can also provide a suitable 3-D environment that supports chondrogenesis.
There is a need to improve current treatments for articular cartilage injuries. This article is the third in a series describing the design and development of an osteochondral scaffold based on collagen-glycosaminoglycan and calcium phosphate technologies for regenerative repair of articular cartilage defects. The previous articles in this series described methods for producing porous, three-dimensional mineralized collagen-GAG (CGCaP) scaffolds whose composition can be reproducibly varied to mimic the composition of subchondral bone, and pore microstructure and mineral phase can be modified. This article describes a method, "liquid-phase cosynthesis," that enables the production of porous, layered scaffolds that mimic the composition and structure of articular cartilage on one side, subchondral bone on the other side, and the continuous, gradual or "soft" interface between these tissues: the tidemark of articular joints. This design enables the layered scaffolds to be inserted into the subchondral bone at an osteochondral defect site without the need for sutures, glue, or screws, with a highly interconnected porous network throughout the entire osteochondral defect. Moreover, the differential moduli of the osseous and cartilaginous compartments enable these layered scaffolds to exhibit compressive deformation behavior that mimics the behavior observed in natural articular joints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.