It is generally accepted that supported graphene is hydrophobic and that its water contact angle is similar to that of graphite. Here, we show that the water contact angles of freshly prepared supported graphene and graphite surfaces increase when they are exposed to ambient air. By using infrared spectroscopy and X-ray photoelectron spectroscopy we demonstrate that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet-O3 treatment. Our findings indicate that graphitic surfaces are more hydrophilic than previously believed, and suggest that previously reported data on the wettability of graphitic surfaces may have been affected by unintentional hydrocarbon contamination from ambient air.
Because of the atomic thinness of graphene, its integration into a device will always involve its interaction with at least one supporting substrate, making the surface energy of graphene critical to its real-life applications. In the current paper, the contact angle of graphene synthesized by chemical vapor deposition (CVD) was monitored temporally after synthesis using water, diiodomethane, ethylene glycol, and glycerol. The surface energy was then calculated based on the contact angle data by the Fowkes, Owens-Wendt (extended Fowkes), and Neumann models. The surface energy of fresh CVD graphene grown on a copper substrate (G/Cu) immediately after synthesis was determined to be 62.2 ± 3.1 mJ/m(2) (Fowkes), 53.0 ± 4.3 mJ/m(2) (Owens-Wendt) and 63.8 ± 2.0 mJ/m(2) (Neumann), which decreased to 45.6 ± 3.9, 37.5 ± 2.3, and 57.4 ± 2.1 mJ/m(2), respectively, after 24 h of air exposure. The ellipsometry characterization indicates that the surface energy of G/Cu is affected by airborne hydrocarbon contamination. G/Cu exhibits the highest surface energy immediately after synthesis, and the surface energy decreases after airborne contamination occurs. The root cause of intrinsically mild polarity of G/Cu surface is discussed.
2D semiconductors allow for unique and ultrasensitive devices to be fabricated for applications ranging from clinical diagnosis instruments to low-energy light-emitting diodes (LEDs). Graphene has championed research in this field since it was first fabricated; however, its zero bandgap creates many challenges. Transition metal dichalcogenides (TMDCs), e.g., MoS2, have a direct bandgap which alleviates the challenge of creating a bandgap in graphene-based devices. Water wettability of MoS2 is critical to device fabrication/performance and MoS2 has been believed to be hydrophobic. Herein, we report that water contact angle (WCA) of freshly exfoliated MoS2 shows temporal evolution with an intrinsic WCA of 69.0 ± 3.8° that increases to 89.0 ± 3.1° after 1 day exposure to ambient air. ATR-FTIR and ellipsometry show that the fresh, intrinsically mildly hydrophilic MoS2 surface adsorbs hydrocarbons from ambient air and thus becomes hydrophobic.
The intrinsic wettability of graphitic materials, such as graphene and graphite, can be readily obscured by airborne hydrocarbon within 5-20 min of ambient air exposure. We report a convenient method to effectively preserve a freshly prepared graphitic surface simply through a water treatment technique. This approach significantly inhibits the hydrocarbon adsorption rate by a factor of ca. 20×, thus maintaining the intrinsic wetting behavior for many hours upon air exposure. Follow-up characterization shows that a nanometer-thick ice-like water forms on the graphitic surface, which remains stabilized at room temperature for at least 2-3 h and thus significantly decreases the adsorption of airborne hydrocarbon on the graphitic surface. This method has potential implications in minimizing hydrocarbon contamination during manufacturing, characterization, processing, and storage of graphene/graphite-based devices. As an example, we show that a water-treated graphite electrode maintains a high level of electrochemical activity in air for up to 1 day.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.