2D semiconductors allow for unique and ultrasensitive devices to be fabricated for applications ranging from clinical diagnosis instruments to low-energy light-emitting diodes (LEDs). Graphene has championed research in this field since it was first fabricated; however, its zero bandgap creates many challenges. Transition metal dichalcogenides (TMDCs), e.g., MoS2, have a direct bandgap which alleviates the challenge of creating a bandgap in graphene-based devices. Water wettability of MoS2 is critical to device fabrication/performance and MoS2 has been believed to be hydrophobic. Herein, we report that water contact angle (WCA) of freshly exfoliated MoS2 shows temporal evolution with an intrinsic WCA of 69.0 ± 3.8° that increases to 89.0 ± 3.1° after 1 day exposure to ambient air. ATR-FTIR and ellipsometry show that the fresh, intrinsically mildly hydrophilic MoS2 surface adsorbs hydrocarbons from ambient air and thus becomes hydrophobic.
Luminescent solar concentrators (LSCs) are large-area sunlight collectors coupled to small area solar cells, for efficient solar-to-electricity conversion. The three key points for successful market penetration of LSCs are: (i)...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.