The mode of metal ion and water binding to the amino acid valine is investigated using both theory and experiment. Computations indicate that without water, the structure of valine is nonzwitterionic. Both Li(+) and Na(+) are coordinated to the nitrogen and carbonyl oxygen (NO coordination), whereas K(+) coordinates to both oxygens (OO coordination) of nonzwitterionic valine. The addition of a single water molecule does not significantly affect the relative energies calculated for the cationized valine clusters. Experimentally, the rates of water evaporation from clusters of Val.M(+)(H(2)O)(1), M = Li, Na, and K, are measured using blackbody infrared radiative dissociation. The dissociation rate from the valine complex is compared to water evaporation rates from model complexes of known structure. These results indicate that the metal ion in the lithiated and the sodiated clusters is NO-coordinated to nonzwitterionic valine, while that in the potassiated cluster has OO coordination, in full agreement with theory. The zwitterionic vs nonzwitterionic character of valine in the potassiated cluster cannot be distinguished experimentally. Extensive modeling provides strong support for the validity of inferring structural information from the kinetic data.
The structures of valine (Val) and methylaminoisobutyric acid (Maiba) bound to a sodium ion, both with and without a water molecule, are investigated using both theory and experiment. Calculations indicate that, without water, sodiated Val forms a charge-solvated structure in which the sodium ion coordinates to the nitrogen and the carbonyl oxygen (NO-coordination), whereas Maiba forms a salt-bridge structure in which the sodium ion coordinates to both carboxylate oxygens (OO-coordination). The addition of a single water molecule does not significantly affect the relative energies or structures of the charge-solvated and salt-bridge forms of either cluster, although in Maiba the mode of sodium ion binding is changed slightly by the water molecule. The preference of Maiba to adopt a zwitterionic form in these complexes is consistent with its higher proton affinity. Experimentally, the rates of water evaporation from clusters of Val.Na(+)(H(2)O) and Maiba.Na(+)(H(2)O) are measured using blackbody infrared radiative dissociation (BIRD). The dissociation rates from the Val and Maiba complexes are compared to water evaporation rates from model complexes of known structure over a wide range of temperatures. Master equation modeling of the BIRD kinetic data yields a threshold dissociation energy for the loss of water from sodiated valine of 15.9 +/- 0.2 kcal/mol and an energy of 15.1 +/- 0.3 kcal/mol for the loss of water from sodiated Maiba. The threshold dissociation energy of water for Val.Na(+)(H(2)O) is the same as that for the charge-solvated model isomers, while the salt-bridge model complex has the same water threshold dissociation energy as Maiba.Na(+)(H(2)O). These results indicate that the threshold dissociation energy for loss of a water molecule from these salt-bridge complexes is approximately 1 kcal/mol less than that for loss of water from the charge-solvated complexes.
Interactions between divalent metal ions and biomolecules are common both in solution and in the gas phase. Here, the intrinsic effect of divalent alkaline earth metal ions (Be, Mg, Ca, Sr, Ba) on the structure of glycine in the absence of solvent is examined. Results from both density functional and Moller-Plesset theories indicate that for all metal ions except beryllium, the salt-bridge form of the ion, in which glycine is a zwitterion, is between 5 and 12 kcal/mol more stable than the charge-solvated structure in which glycine is in its neutral form. For beryllium, the charge-solvated structure is 5-8 kcal/mol more stable than the salt-bridge structure. Thus, there is a dramatic change in the structure of glycine with increased metal cation size. Using a Hartree-Fock-based partitioning method, the interaction between the metal ion and glycine is separated into electrostatic, charge transfer and deformation components. The charge transfer interactions are more important for stabilizing the charge-solvated structure of glycine with beryllium relative to magnesium. In contrast, the difference in stability between the charge-solvated and salt-bridge structure for magnesium is mostly due to electrostatic interactions that favor formation of the salt-bridge structure. These results indicate that divalent metal ions dramatically influence the structure of this simplest amino acid in the gas phase.
Bottom-up proteomics largely relies on tryptic peptides for protein identification and quantification. Tryptic digestion often provides limited coverage of protein sequence because of issues such as peptide length, ionization efficiency, and post-translational modification colocalization. Unfortunately, a region of interest in a protein, for example, because of proximity to an active site or the presence of important post-translational modifications, may not be covered by tryptic peptides. Detection limits, quantification accuracy, and isoform differentiation can also be improved with greater sequence coverage. Selected reaction monitoring (SRM) would also greatly benefit from being able to identify additional targetable sequences. In an attempt to improve protein sequence coverage and to target regions of proteins that do not generate useful tryptic peptides, we deployed a multiprotease strategy on the HeLa proteome. First, we used seven commercially available enzymes in single, double, and triple enzyme combinations. A total of 48 digests were performed. 5223 proteins were detected by analyzing the unfractionated cell lysate digest directly; with 42% mean sequence coverage. Additional strong-anion exchange fractionation of the most complementary digests permitted identification of over 3000 more proteins, with improved mean sequence coverage. We then constructed a web application (https://proteomics.swmed.edu/confetti) that allows the community to examine a target protein or protein isoform in order to discover the enzyme or combination of enzymes that would yield peptides spanning a certain region of interest in the sequence. Finally, we examined the use of nontryptic digests for SRM. From our strong-anion exchange fractionation data, we were able to identify three or more proteotypic SRM candidates within a single digest for 6056 genes. Surprisingly, in 25% of these cases the digest producing the most observable proteotypic peptides was neither trypsin nor Lys-C.
Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors using its B subunit (CTB). The ganglioside (glycolipid) GM1 is thought to be the sole CT receptor; however, the mechanism by which CTB binding to GM1 mediates internalization of CT remains enigmatic. Here we report that CTB binds cell surface glycoproteins. Relative contributions of gangliosides and glycoproteins to CTB binding depend on cell type, and CTB binds primarily to glycoproteins in colonic epithelial cell lines. Using a metabolically incorporated photocrosslinking sugar, we identified one CTB-binding glycoprotein and demonstrated that the glycan portion of the molecule, not the protein, provides the CTB interaction motif. We further show that fucosylated structures promote CTB entry into a colonic epithelial cell line and subsequent host cell intoxication. CTB-binding fucosylated glycoproteins are present in normal human intestinal epithelia and could play a role in cholera.DOI: http://dx.doi.org/10.7554/eLife.09545.001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.