In an analysis of biopsies from an apparently homogeneous group of stable, long-term pediatric liver transplant recipients with consistently normal liver test results, we found evidence of chronic graft injury (inflammation and/or fibrosis). Biopsy samples with interface activity had a gene expression pattern associated with TCMR.
BaCKgRoUND aND aIMS:Tolerance is transplantation's holy grail, as it denotes allograft health without immunosuppression and its toxicities. Our aim was to determine, among stable long-term pediatric liver transplant recipients, the efficacy and safety of immunosuppression withdrawal to identify operational tolerance. appRoaCH aND ReSUltS: We conducted a multicenter, single-arm trial of immunosuppression withdrawal over 36-48 weeks. Liver tests were monitored biweekly (year 1), monthly (year 2), and bimonthly (years 3-4). For-cause biopsies were done at investigators' discretion but mandated when alanine aminotransferase or gamma glutamyltransferase exceeded 100 U/L. All subjects underwent final liver biopsy at trial end. The primary efficacy endpoint was operational tolerance, defined by strict biochemical and histological criteria 1 year after stopping immunosuppression. Among 88 subjects (median age 11 years; 39 boys; 57 deceased donor grafts), 33 (37.5%; 95% confidence interval [CI] 27.4%, 48.5%) were operationally tolerant, 16 were nontolerant by histology (met biochemical but failed histological criteria), and 39 were nontolerant by rejection. Rejection, predicted by subtle liver inflammation in trial entry biopsies, typically (n = 32) occurred at ≤32% of the trial-entry immunosuppression dose and was treated with corticosteroids (n = 32) and/or tacrolimus (n = 38) with resolution (liver tests within 1.5 times the baseline) for all but 1 subject. No death, graft loss, or chronic, severe, or refractory rejection occurred. Neither fibrosis stage nor the expression level of a rejection gene set increased over 4 years for either tolerant or nontolerant subjects.CoNClUSIoNS: Immunosuppression withdrawal showed that 37.5% of selected pediatric liver-transplant recipients were operationally tolerant. Allograft histology did not deteriorate for either tolerant or nontolerant subjects. The timing and reversibility of failed withdrawal justifies future trials exploring the efficacy, safety, and potential benefits of immunosuppression minimization.
BACKGROUND AND AIMS As conversion from calcineurin inhibitor to sirolimus (SRL), a mechanistic target of rapamycin inhibitor (mTOR‐I), has been shown to enhance immunoregulatory profiles in liver transplant (LT) recipients (LTRs), mTOR‐I therapy might allow for increased success of immunosuppression (IS) withdrawal. Our aim was to determine if operational tolerance could be observed in LTRs withdrawn from SRL and if blood/graft tolerance biomarkers were predictive of successful withdrawal. APPROACH AND RESULTS We performed a prospective trial of SRL monotherapy withdrawal in nonimmune, nonviremic LTRs > 3 years post‐LT. SRL was weaned over ~6 months, and biopsies were performed 12 months postweaning or at concern for acute rejection. Twenty‐one LTRs consented; 6 were excluded due to subclinical acute rejection on baseline biopsy or other reasons, and 15 underwent weaning (age 61.3 ± 8.8 years; LT to SRL weaning 6.7 ± 3 years). Eight (53%) achieved operational tolerance (TOL). Of the 7 who were nontolerant (non‐TOL), 6 had mild acute rejection on biopsy near the end of weaning or at study end; 1 was removed from the trial due to liver cancer recurrence. At baseline preweaning, there were statistically increased blood tolerogenic dendritic cells and cell phenotypes correlating with chronic antigen presentation in the TOL versus non‐TOL groups. A previously identified biopsy gene signature accurately predicted TOL versus non‐TOL in 12/14 LTRs before weaning. At study end, biopsy staining revealed statistically significant increases in antigen‐presenting cell:leukocyte pairings, FOXP3+/CD4+ T cells, Tbet+/CD8+ T cells, and lobular dendritic cells in the non‐TOL group. CONCLUSIONS This study evaluated IS withdrawal directly from mTOR‐I therapy in LTRs and achieved > 50% operational tolerance. Preweaning gene expression and peripheral blood mononuclear cell profiling may be useful as predictors of successful mTOR‐I therapy withdrawal. NCT02062944.
Several modes of telepathology exist including static (store-and-forward), dynamic (live video streaming or robotic microscopy), and hybrid technology involving whole slide imaging (WSI). Telepathology has been employed at the University of Pittsburgh Medical Center (UPMC) for over a decade at local, national, and international sites. All modes of telepathology have been successfully utilized to exploit our institutions subspecialty expertise and to compete for pathology services. This article discusses the experience garnered at UPMC with each of these teleconsultation methods. Static and WSI telepathology systems have been utilized for many years in transplant pathology using a private network and client-server architecture. Only minor clinically significant differences of opinion were documented. In hematopathology, the CellaVision® system is used to transmit, via email, static images of blood cells in peripheral blood smears for remote interpretation. While live video streaming has remained the mode of choice for providing immediate adequacy assessment of cytology specimens by telecytology, other methods such as robotic microscopy have been validated and shown to be effective. Robotic telepathology has been extensively used to remotely interpret intra-operative neuropathology consultations (frozen sections). Adoption of newer technology and increased pathologist experience has improved accuracy and deferral rates in teleneuropathology. A digital pathology consultation portal (https://pathconsult.upmc.com/) was recently created at our institution to facilitate digital pathology second opinion consults, especially for WSI. The success of this web-based tool is the ability to handle vendor agnostic, large image files of digitized slides, and ongoing user-friendly customization for clients and teleconsultants. It is evident that the practice of telepathology at our institution has evolved in concert with advances in technology and user experience. Early and continued adoption of telepathology has promoted additional digital pathology resources that are now being leveraged for other clinical, educational, and research purposes.
Conventional histopathology is the gold standard for allograft monitoring, but its value proposition is increasingly questioned. “-Omics” analysis of tissues, peripheral blood and fluids and targeted serologic studies provide mechanistic insights into allograft injury not currently provided by conventional histology. Microscopic biopsy analysis, however, provides valuable and unique information: a) spatial-temporal relationships; b) rare events/cells; c) complex structural context; and d) integration into a “systems” model. Nevertheless, except for immunostaining, no transformative advancements have “modernized” routine microscopy in over 100 years. Pathologists now team with hardware and software engineers to exploit remarkable developments in digital imaging, nanoparticle multiplex staining, and computational image analysis software to bridge the traditional histology - global “–omic” analyses gap. Included are side-by-side comparisons, objective biopsy finding quantification, multiplexing, automated image analysis, and electronic data and resource sharing. Current utilization for teaching, quality assurance, conferencing, consultations, research and clinical trials is evolving toward implementation for low-volume, high-complexity clinical services like transplantation pathology. Cost, complexities of implementation, fluid/evolving standards, and unsettled medical/legal and regulatory issues remain as challenges. Regardless, challenges will be overcome and these technologies will enable transplant pathologists to increase information extraction from tissue specimens and contribute to cross-platform biomarker discovery for improved outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.