Background-It is well known that patients with type 2 diabetes have increased risk of cardiovascular disease, but it is not known whether they have underlying abnormalities in cardiac or skeletal muscle high-energy phosphate metabolism. Methods and Results-We studied 21 patients with type 2 diabetes with no evidence of coronary artery disease or impaired cardiac function, as determined by echocardiography, and 15 age-, sex-, and body mass index-matched control subjects. Cardiac high-energy phosphate metabolites were measured at rest using 31 P nuclear magnetic resonance spectroscopy (MRS). Skeletal muscle high-energy phosphate metabolites, intracellular pH, and oxygenation were measured using 31 P MRS and near infrared spectrophotometry, respectively, before, during, and after exercise. Although their cardiac morphology, mass, and function appeared to be normal, the patients with diabetes had significantly lower phosphocreatine (PCr)/ATP ratios, at 1.50Ϯ0.11, than the healthy volunteers, at 2.30Ϯ0.12. The cardiac PCr/ATP ratios correlated negatively with the fasting plasma free fatty acid concentrations. Although skeletal muscle energetics and pH were normal at rest, PCr loss and pH decrease were significantly faster during exercise in the patients with diabetes, who had lower exercise tolerance. After exercise, PCr recovery was slower in the patients with diabetes and correlated with tissue reoxygenation times. The exercise times correlated negatively with the deoxygenation rates and the hemoglobin (Hb)A 1c levels and the reoxygenation times correlated positively with the HbA 1c levels.
Conclusions-Type
Our data provide evidence of a bioenergetic deficit in genotype-confirmed HCM, which is present to a similar degree in three disease-gene groups. The presence of energetic abnormalities, even in those without hypertrophy, supports a proposed link between altered cardiac energetics and development of the disease phenotype.
Exercise therapy improves short-term metabolic, brain, physical, and cognitive function, without changes in glucose control following stroke. The long-term impact of exercise on stroke recurrence, cardiovascular health, and disability should now be explored.
Neurodevelopmental disorders could be caused by maternal antibodies or other serum factors. We detected serum antibodies binding to rodent Purkinje cells and other neurons in a mother of three children: the first normal, the second with autism, and the third with a severe specific language disorder. We injected the serum (0.5-1.0 ml/day) into pregnant mice during gestation and found altered exploration and motor coordination and changes in cerebellar magnetic resonance spectroscopy in the mouse offspring, comparing with offspring of mice injected with sera from mothers of healthy children. This evidence supports a role for maternal antibodies in some forms of neurodevelopmental disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.