The speed and feed effects of the friction stir welding (FSW) process on the surface texture along the top of a butt welded nugget were studied. The tests were conducted using fine grain (0.8-2 lm) titanium alloy 6Al-4V with a nominal thickness of 2.5 mm. It was shown that the pin tool marks along the top surface of the weld can be highly detrimental to both the superplastic forming (SPF) characteristics and the fatigue performance of welded panels. Removing the marks by machining the top surface after FSW was found to eliminate the predominant tearing of the weld during SPF and most of the fatigue life of across the weld was also restored. Through additional development of the FSW process parameters, the butt welded nugget was made to have equivalent SPF characteristics as the parent sheet material. By using a water-cooled pin tool and other cooling techniques, it is believed that the weld zone can be kept below the beta transus temperature during FSW, which enables the formation of a grain structure that is uniquely conducive to superplastic behavior, when compared to conventional fusion welding processes.
Weight reduction in automobiles and in aerospace industries can profoundly register for the behemoth change in the consumption of the fossil fuels and, in turn, CO 2 emission. With a promising hope in hindsight for weight reduction, we have successfully produced butt joints of friction stir welded (FSWed) dissimilar, and rather novice, α-β titanium alloys-ATI-425 and TIMET-54M. The study presented in this article encompasses the microstructural and mechanical properties of the joints for two cases, (1) ATI-425 on the advancing side; and (2) TIMET-54M on the advancing side. The evolution of microstructure and concomitant mechanical properties are characterized by optical microscopy, microhardness, and tensile properties. A detailed description of the microstructural evolution and its correlation with the mechanical properties have been presented in this study. Our investigations suggest that mixing patterns are dependent on the location (advancing, or retreating) of the alloying sheet. However, the microstructure in the weld nugget (WN) is quite similar (grain boundary α, and basket weave morphology consisting of α + β lamellae) in both cases with traces of untransformed β. The thermo-mechanically affected zone (TMAZ) on the either side of the weld is primarily affected by the microstructure of the base material (BM). A noticeable increase in the hardness values in the WN is accompanied by significant deflection on the advancing and retreating sides. The tensile properties extracted from the global stress strain curves are comparable with minimal difference for both cases. In both cases, the fracture occurred on the retreating side of the weld.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.