Axially doped p-i-n InAs0.93Sb0.07 nanowire arrays have been grown on Si substrates and fabricated into photodetectors for shortwave infrared detection. The devices exhibit a leakage current density around 2 mA/cm(2) and a 20% cutoff of 2.3 μm at 300 K. This record low leakage current density for InAsSb based devices demonstrates the suitability of nanowires for the integration of III-V semiconductors with silicon technology.
Abstract-A systematic study of impact ionization, avalanche multiplication, and excess noise in InAs diodes has been carried out, confirming that avalanche multiplication is dominated by the impact ionization of electrons. This results in highly desirable "electron avalanche photodiode" characteristics previously only demonstrated in HgCdTe diodes, which are discussed in detail. The suppression of excess noise by nonlocal effects, to levels below the local model minimum of F = 2, is explained. An electron ionization coefficient is calculated and shown to be capable of modeling the electron impact ionization, which differs characteristically from that in wider bandgap III-V materials.Index Terms-Avalanche photodiode (APD), electron avalanche photodiode (e-APD), impact ionization, InAs, ionization coefficient.
Beamline I22 at Diamond Light Source is dedicated to the study of soft-matter systems from both biological and materials science. The beamline can operate in the range 3.7 keV to 22 keV for transmission SAXS and 14 keV to 20 keV for microfocus SAXS with beam sizes of 240 µm × 60 µm [full width half-maximum (FWHM) horizontal (H) × vertical (V)] at the sample for the main beamline, and approximately 10 µm × 10 µm for the dedicated microfocusing platform. There is a versatile sample platform for accommodating a range of facilities and user-developed sample environments. The high brilliance of the insertion device source on I22 allows structural investigation of materials under extreme environments (for example, fluid flow at high pressures and temperatures). I22 provides reliable access to millisecond data acquisition timescales, essential to understanding kinetic processes such as protein folding or structural evolution in polymers and colloids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.