This paper reports recent developments in Rapfish, a normative, scalable and flexible rapid appraisal technique that integrates both ecological and human dimensions to evaluate the status of fisheries in reference to a norm or goal. Appraisal status targets may be sustainability, compliance with a standard (such as the UN code of conduct for responsible fisheries) or the degree of progress in meeting some other goal or target. The method combines semi-quantitative (e.g. ecological) and qualitative (e.g. social) data via multiple evaluation fields, each of which is assessed through scores assigned to six to 12 attributes or indicators: the scoring method allows user flexibility to adopt a wide range of utility relationships. For assessing sustainability, six evaluation fields have been developed: ecological, technological, economic, social, ethical and institutional. Each field can be assessed directly with a set of scored attributes, or several of the fields can be dealt with in greater detail using nested subfields that themselves comprise multidimensional Rapfish assessments (e.g. the hierarchical institutional field encompasses both governance and management, including a detailed analysis of legality). The user has the choice of including all or only some of the available sustainability fields. For the attributes themselves, there will rarely be quantitative data, but scoring allows these items to be estimated. Indeed, within a normative framework, one important advantage with Rapfish is transparency of the rigour, quality and replicability of the scores. The Rapfish technique employs a constrained multidimensional ordination that is scaled to situate data points within evaluation space. Within each evaluation field, results may be presented as a two-dimensional plot or in a one-dimensional rank order. Uncertainty is expressed through the probability distribution of Monte-Carlo simulations that use the C.L. on each original observation. Overall results of the multidisciplinary analysis may be shown using kite diagrams that compare different locations, time periods (including future projections) and management scenarios, which make policy trade-offs explicit. These enhancements are now available in the R programming language and on an open website, where users can run Rapfish analyses by downloading the software or uploading their data to a user interface.
We extend an established simulation-based method to test for significant short-duration (1-2 centuries) demographic events known from one documented historical and one oral historical context. Case study 1 extrapolates population data from the Western historical tradition using historically derived demographic data from the catastrophic European Black Death/bubonic plague (). We find a corresponding statistically significant drop in absolute population using an extended version of a previously published simulation method. Case study 2 uses this refined simulation method to test for a settlement gap identified in oral historical records of descendant Tsimshian First Nations communities from the Prince Rupert Harbour region of the Pacific Northwest region of British Columbia, Canada. Using a regional database of = 523 radiocarbon dates, we find a significant drop in relative population using the extended simulation-based method consistent with Tsimshian oral records. We conclude that our technical refinement extends the utility of radiocarbon simulation methods and can provide a rigorous test of demographic predictions derived from a range of historical sources.
As the Cordilleran and Laurentide Ice Sheets retreated, North America was colonized by human populations; however, the spatial patterns of subsequent population growth are unclear. Temporal frequency distributions of aggregated radiocarbon (14C) dates are used as a proxy of population size and can be used to track this expansion. The Canadian Archaeological Radiocarbon Database contains more than 35,000 14C dates and is used in this study to map the spatiotemporal demographic changes of Holocene populations in North America at a continental scale for the past 13,000 y. We use the kernel method, which converts the spatial distribution of 14C dates into estimates of population density at 500-y intervals. The resulting maps reveal temporally distinct, dynamic patterns associated with paleodemographic trends that correspond well to genetic, archaeological, and ethnohistoric evidence of human occupation. These results have implications for hypothesizing and testing migration routes into and across North America as well as the relative influence of North American populations on the evolution of the North American ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.