Evaluation of the impact of turbidity on satellite-derived bathymetry (SDB) is a crucial step for selecting optimal scenes and for addressing the limitations of SDB. This study examines the relatively high-resolution MultiSpectral instrument (MSI) onboard Sentinel-2A (10–20–60 m) and the moderate-resolution Ocean and Land Color instrument (OLCI) onboard Sentinel-3A (300 m) for generating bathymetric maps through a conventional ratio transform model in environments with some turbidity in South Florida. Both sensors incorporate additional spectral bands in the red-edge near infrared (NIR) region, allowing turbidity detection in optically shallow waters. The ratio model only requires two calibration parameters for vertical referencing using available chart data, whereas independent lidar surveys are used for validation and error analysis. The MSI retrieves bathymetry at 10 m with errors of 0.58 m at depths ranging between 0–18 m (limit of lidar survey) in West Palm Beach and of 0.22 m at depths ranging between 0–5 m in Key West, in conditions with low turbidity. In addition, this research presents an assessment of the SDB depth limit caused by turbidity as determined with the reflectance of the red-edge bands at 709 nm (OLCI) and 704 nm (MSI) and a standard ocean color chlorophyll concentration. OLCI and MSI results are comparable, indicating the potential of the two optical missions as interchangeable sensors that can help determine the selection of the optimal scenes for SDB mapping. OLCI can provide temporal data to identify water quality characteristics and general SDB patterns. The relationship of turbidity with depth detection may help to enhance the operational use of SDB over environments with varying water transparency conditions, particularly in remote and inaccessible regions of the world.
Cyanobacterial harmful algal blooms (cyanoHABs) are a serious environmental, water quality and public health issue worldwide because of their ability to form dense biomass and produce toxins. Models and algorithms have been developed to detect and quantify cyanoHABs biomass using remotely sensed data but not for quantifying bloom magnitude, information that would guide water quality management decisions. We propose a method to quantify seasonal and annual cyanoHAB magnitude in lakes and reservoirs. The magnitude is the spatiotemporal mean of weekly or biweekly maximum cyanobacteria biomass for the season or year. CyanoHAB biomass is quantified using a standard reflectance spectral shape-based algorithm that uses data from Medium Resolution Imaging Spectrometer (MERIS). We demonstrate the method to quantify annual and seasonal cyanoHAB magnitude in Florida and Ohio (USA) respectively during 2003–2011 and rank the lakes based on median magnitude over the study period. The new method can be applied to Sentinel-3 Ocean Land Color Imager (OLCI) data for assessment of cyanoHABs and the change over time, even with issues such as variable data acquisition frequency or sensor calibration uncertainties between satellites. CyanoHAB magnitude can support monitoring and management decision-making for recreational and drinking water sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.