Effective sealing in turbomachinery reduces the leakage flow bypassing the turbine blades and also reduces the losses where the leakage flow mixes with the primary flow. In general the clearance should be as small as possible but is limited by thermal and mechanical effects which vary with load. In recent years intermittent energy sources, particularly wind and solar, have appeared in greater numbers on the power network. As a consequence conventional power plants need to become more flexible to accommodate renewable energy generation. A sealing technology which can accommodate rapid changes in load and maintain seal performance would be a valuable development. This paper presents a novel seal design for steam turbines. The seal is designed to be capable of maintaining a smaller clearance than that of conventional labyrinth seals whilst allowing for dynamic movement with the rotor. The paper describes the seal concept and the analytic al work undertaken to demonstrate the concept. The seal design has also been tested in test facilities at Durham and the initial experimental results are included. They show that the concept works as intended.
This paper describes the design and optimization of an ‘air-curtain’ type seal using a fluidic jet to reduce tip leakage losses on a small high-speed single stage axial turbine device. The application will essentially demonstrate proof of concept for turbomachinery applications, opening the door for the development of future designs for applications in all scales of turbomachine. CFD is used to develop and optimize the seal design. The performance benefit from applying the new seal is predicted. These calculations illustrate the importance of accurately accounting for the effects of the sealing jet on shroud shear forces, in addition to leakage flow reduction, when determining the overall gain in turbine output power from the improved sealing. It is planned to validate the new seal design in full-scale turbine tests, during the next phase of the work.
This paper presents a series of experiments on the Aerostatic Seal, a dynamic clearance seal for steam turbine application first described at the 2015 ASME Turbo Expo (Paper Number GT2015-43471). This dynamic clearance seal moves with rotor excursions and so has the potential to deliver a smaller clearance than traditional seals. The concept is an extension of the retractable seal design which is widely used in existing steam turbines. The experimental program was carried out in a low cost static test facility using an aerostatic seal design. The seal exhibited a dynamic clearance response and will therefore respond to rotor excursions. 3D CFD was also used to aid the understanding of flow features not captured by the analytical design tool. Adjustments to both the design process and to future seal designs are proposed in the body of the paper. This paper therefore describes an experimental proof of concept for the aerostatic seal and paves the way for future development in rotating facilities.
This paper describes an upgrade to high temperature operation of the Engine Component AeroThermal (ECAT) facility, an established engine-parts facility at the University of Oxford. The facility is used for high-TRL research and development, new technology demonstration, and for component validation (typically large civil-engine HP NGVs). In current operation the facility allows Reynolds number, Mach number, and coolant-to-mainstream pressure ratio to be matched to engine conditions. Rich-burn or lean-burn temperature, swirl and turbulence profiles can also be simulated. The upgrade will increase the maximum inlet temperature to 600 K, allowing coolant-to-mainstream temperature ratio to be matched to engine conditions. This will allow direct validation of temperature ratio scaling methods in addition to providing a test bed in which all important non-dimensional parameters for aero-thermal behaviour are exactly matched. To accurately predict the operating conditions of the upgraded facility, a low order transient thermal model was developed in which the air delivery system and working section are modelled as a series of distributed thermal masses. Nusselt number correlations were used to calculate convective heat transfer to and from the fluid in the pipes and working section. The correlation was tuned and validated with experimental results taken from tests conducted in the existing facility. This modelling exercise informed a number of high-level facility design decisions, and provides an accurate estimate of the running conditions of the upgraded facility. We present detailed results from the low-order modelling, and discuss the key design decisions. We also present a discussion of challenges in the mechanical design of the working section, which is complicated by transient thermal stress induced in the working section components during facility start-up. The high-temperature core is unusually high-TRL for a research organisation, and we hope both the development and methodology will be of interest to engine designers and the research community.
This paper reports on the latest phase of the development of a new rotating machinery sealing technology, which was a successful seal test in a high temperature steam test facility at TU Brauschweig in Germany. The “Aerostatic Seal” is a dynamic clearance seal that is capable of maintaining very small clearances with a rotor and has the potential for a wide range of rotating machinery applications. It has been developed in recent years at Durham University, UK, in collaboration with a major OEM, with a focus on steam turbine sealing, and has previously been reported on in a number of ASME Turbo Expo papers. Previous work has reported on the design tool, and two air test facilities; testing in steam addressed the effect of high temperature components and the working fluid, and was an opportunity to verify the design system. The seal is a development of a retractable gland seal and so in a low load condition it is retracted from the rotor with a large rotor clearance and then when the pressure ratio is sufficient moves to an operational small clearance. At its operational clearance the seal is capable of moving with rotor vibrations which means the design clearance can be smaller than any expected rotor movement. The benefits include a significant reduction in leakage when compared to conventional sealing technologies and also the ability to react to large transients or thermal growths caused by rapid changes in machine loads and speeds. The seal is shown to operate well in this environment and this work moves the technology closer to deployment in industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.