We investigate the dynamical behavior of both binary fluid and ternary microemulsion systems in two dimensions using a recently introduced hydrodynamic lattice-gas model of microemulsions. We find that the presence of amphiphile in our simulations reduces the usual oil-water interfacial tension in accord with experiment and consequently affects the non-equilibrium growth of oil and water domains. As the density of surfactant is increased we observe a crossover from the usual two-dimensional binary fluid scaling laws to a growth that is slow, and we find that this slow growth can be characterized by a logarithmic time scale. With sufficient surfactant in the system we observe that the domains cease to grow beyond a certain point and we find that this final characteristic domain size is inversely proportional to the interfacial surfactant concentration in the system.
arXiv:comp-gas/9507001v2 7 Sep 1995 A Lattice-Gas Model of Microemulsions We develop a lattice gas model for the nonequilibrium dynamics of microemulsions. Our model is based on the immiscible lattice gas of Rothman and Keller, which we reformulate using a microscopic, particulate description so as to permit generalisation to more complicated interactions, and on the prescription of Chan and Liang for introducing such interparticle interactions into lattice gas dynamics. We present the results of simulations to demonstrate that our model exhibits the correct phenomenology, and we contrast it with both equilibrium lattice models of microemulsions, and to other lattice gas models.
Although shear-induced isotropic-to-lamellar transitions in ternary systems of oil, water and surfactant have been observed experimentally and predicted theoretically by simple models for some time now, their numerical simulation has not been achieved so far. In this work we demonstrate that a recently introduced hydrodynamic lattice-gas model of amphiphilic fluids is well suited for this purpose: the two-dimensional version of this model does indeed exhibit a shear-induced isotropic-to-lamellar phase transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.