Increasing the areal capacity or electrode thickness in lithium ion batteries is one possible means to increase pack level energy density while simultaneously lowering cost. The physics that limit use of high areal capacity as a function of battery power to energy ratio are poorly understood and thus most currently produced automotive lithium ion cells utilize modest loadings to ensure long life over the vehicle battery operation. Here we show electrolyte transport limits the utilization of the positive electrode at critical C-rates during discharge; whereas, a combination of electrolyte transport and polarization lead to lithium plating in the graphite electrode during charge. Experimental measurements are compared with theoretical predictions based on concentrated solution and porous electrode theories. An analytical expression is derived to provide design criteria for long lived operation based on the physical properties of the electrode and electrolyte. Finally, a guideline is proposed that graphite cells should avoid charge current densities near or above 4 mA/cm 2 unless additional precautions have been made to avoid deleterious side reaction. Lithium-ion (Li-ion) batteries are currently being used as the primary energy storage device in hybrid, plug-in, and all electric vehicles. This commercialization has been possible only by leveraging decades of previous scientific and engineering advances on materials, electrodes, and cell development. However, interactions in this complex system are still not fully understood. Automotive grade battery cells are required to fulfill a variety of optimization criteria in order to meet customer expectations and enable highly functional, robust and competitive products. In Fig. 1, key cell level criteria are shown for available technology as well as future development goals. Many of these values are highly influential on each other. In order to optimize one of the criteria it is always necessary to critically evaluate the impact on others. Key goals are to increase vehicle range and decrease cost at the same time. Minimizing the fraction of non-active material is an intuitive path to achieve these goals; however, the cell power and rate capability must simultaneously be maintained. [1][2][3] To derive clear development goals, the high level targets can be broken down to specific component requirements on the different levels of a storage system. 1,4 In Fig. 2, an analysis is shown for a state of the art prismatic hard-case automotive cell format. A battery level specific energy of ∼225 Wh/kg is widely accepted to be a critical value for sustainable implementation of long range electric vehicles. It represents a useful ratio between vehicle weight and range. In order to achieve this high specific energy, all subcomponents of the storage system have to meet demanding requirements as well. On the cell level, large format cells are favorable as they reduce the amount of cell housing needed per cell volume. Prismatic cell formats have a positive influence on the packing densi...
Dissolution and migration of manganese from cathode lead to severe capacity fading of lithium manganate-carbon cells. Overcoming this major problem requires a better understanding of the mechanisms of manganese dissolution, migration and deposition. Here we apply a variety of advanced analytical methods to study lithium manganate cathodes that are cycled with different anodes. We show that the oxidation state of manganese deposited on the anodes is +2, which differs from the results reported earlier. Our results also indicate that a metathesis reaction between Mn(II) and some species on the solid-electrolyte interphase takes place during the deposition of Mn(II) on the anodes, rather than a reduction reaction that leads to the formation of metallic Mn, as speculated in earlier studies. The concentration of Mn deposited on the anode gradually increases with cycles; this trend is well correlated with the anodes rising impedance and capacity fading of the cell.
A non-aqueous lithium-ion redox fl ow battery employing organic molecules is proposed and investigated. 2,5-Di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene and a variety of molecules derived from quinoxaline are employed as initial high-potential and low-potential active materials, respectively. Electrochemical measurements highlight that the choice of electrolyte and of substituent groups can have a signifi cant impact on redox species performance. The charge-discharge characteristics are investigated in a modifi ed coin-cell confi guration. After an initial break-in period, coulombic and energy effi ciencies for this unoptimized system are ∼ 70% and ∼ 37%, respectively, with major charge and discharge plateaus between 1.8-2.4 V and 1.7-1.3 V, respectively, for 30 cycles. Performance enhancements are expected with improvements in cell design and materials processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.