We previously demonstrated that insulin-mediated severe hypoglycemia induces lethal cardiac arrhythmias. However, whether chronic diabetes and insulin deficiency exacerbates, and whether recurrent antecedent hypoglycemia ameliorates, susceptibility to arrhythmias remains unknown. Thus, adult Sprague-Dawley rats were randomized into four groups: 1) nondiabetic (NONDIAB), 2) streptozotocin-induced insulin deficiency (STZ), 3) STZ with antecedent recurrent (3 days) hypoglycemia (∼40–45 mg/dL, 90 min) (STZ+RH), and 4) insulin-treated STZ (STZ+Ins). Following treatment protocols, all rats underwent hyperinsulinemic (0.2 units ⋅ kg−1 ⋅ min−1), severe hypoglycemic (10–15 mg/dL) clamps for 3 h with continuous electrocardiographic recordings. During matched nadirs of severe hypoglycemia, rats in the STZ+RH group required a 1.7-fold higher glucose infusion rate than those in the STZ group, consistent with the blunted epinephrine response. Second-degree heart block was increased 12- and 6.8-fold in the STZ and STZ+Ins groups, respectively, compared with the NONDIAB group, yet this decreased 5.4-fold in the STZ+RH group compared with the STZ group. Incidence of third-degree heart block in the STZ+RH group was 5.6%, 7.8-fold less than the incidence in the STZ group (44%). Mortality due to severe hypoglycemia was 5% in the STZ+RH group, 6.2-fold less than that in the STZ group (31%). In summary, severe hypoglycemia–induced cardiac arrhythmias were increased by insulin deficiency and diabetes and reduced by antecedent recurrent hypoglycemia. In this model, recurrent moderate hypoglycemia reduced fatal severe hypoglycemia–induced cardiac arrhythmias.
Background
Left ventricular (LV) hypertrophy (LVH) in uncontrolled hypertension is an independent predictor of mortality, though its regression with treatment improves outcomes. Retrospective data suggest that early control of hypertension provides a prognostic advantage and this strategy is included in the 2018 European guidelines, which recommend treating grade II/III hypertension to target blood pressure (BP) within 3 months. The earliest LVH regression to date was demonstrated by echocardiography at 24 weeks. The effect of a rapid guideline-based treatment protocol on LV remodelling, with very early BP control by 18 weeks remains controversial and previously unreported. We aimed to determine whether such rapid hypertension treatment is associated with improvements in LV structure and function through paired cardiovascular magnetic resonance (CMR) scanning at baseline and 18 weeks, utilising CMR mass and feature tracking analysis.
Methods
We recruited participants with never-treated grade II/III hypertension, initiating a guideline-based treatment protocol which aimed to achieve BP control within 18 weeks. CMR and feature tracking were used to assess myocardial morphology and function immediately before and after treatment.
Results
We acquired complete pre- and 18-week post-treatment data for 41 participants. During the interval, LV mass index reduced significantly (43.5 ± 9.8 to 37.6 ± 8.3 g/m2, p < 0.001) following treatment, accompanied by reductions in LV ejection fraction (65.6 ± 6.8 to 63.4 ± 7.1%, p = 0.03), global radial strain (46.1 ± 9.7 to 39.1 ± 10.9, p < 0.001), mid-circumferential strain (− 20.8 ± 4.9 to − 19.1 ± 3.7, p = 0.02), apical circumferential strain (− 26.0 ± 5.3 to − 23.4 ± 4.2, p = 0.003) and apical rotation (9.8 ± 5.0 to 7.5 ± 4.5, p = 0.003).
Conclusions
LVH regresses following just 18 weeks of intensive antihypertensive treatment in subjects with newly-diagnosed grade II/III hypertension. This is accompanied by potentially advantageous functional changes within the myocardium and supports the hypothesis that rapid treatment of hypertension could improve clinical outcomes.
Trial registration: ISRCTN registry number: 57475376 (assigned 25/06/2015).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.