Evolutionary algorithm research and applications began over 50 years ago. Like other artificial intelligence techniques, evolutionary algorithms will likely see increased use and development due to the increased availability of computation, more robust and available open source software libraries, and the increasing demand for artificial intelligence techniques. As these techniques become more adopted and capable, it is the right time to take a perspective of their ability to integrate into society and the human processes they intend to augment. In this review, we explore a new taxonomy of evolutionary algorithms and resulting classifications that look at five main areas: the ability to manage the control of the environment with limiters, the ability to explain and repeat the search process, the ability to understand input and output causality within a solution, the ability to manage algorithm bias due to data or user design, and lastly, the ability to add corrective measures. These areas are motivated by today's pressures on industry to conform to both societies concerns and new government regulatory rules. As many reviews of evolutionary algorithms exist, after motivating this new taxonomy, we briefly classify a broad range of algorithms and identify areas of future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.