We define the target, mechanism, and structural basis of inhibition of bacterial RNA polymerase (RNAP) by the tetramic acid antibiotic streptolydigin (Stl). Stl binds to a site adjacent to but not overlapping the RNAP active center and stabilizes an RNAP-active-center conformational state with a straight-bridge helix. The results provide direct support for the proposals that alternative straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations exist and that cycling between straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations is required for RNAP function. The results set bounds on models for RNAP function and suggest strategies for design of novel antibacterial agents.
Peripherin/rds plays an essential role in the maintenance of photoreceptor rod cell disk membrane structure. The purification of this protein to homogeneity [Boesze-Battaglia, K., et al. (1997) Biochemistry 36, 6835-6846] has allowed us to characterize the functional role of peripherin/rds in the maintenance of rod outer segment (ROS) membrane fusion processes. Utilizing a cell-free fusion assay system, we report that the fusion of R18-labeled ROS plasma membrane (R18-PM) with disk membranes or peripherin/rds-enriched large unilammellar vesicles (LUVs) is inhibited upon trypsinolysis of peripherin/rds. To understand this phenomenon, we tested the ability of a series of overlapping synthetic C-terminal peripherin/rds peptides to mediate model membrane fusion. Within the 63 amino acid long region of the C-terminus, we identified a minimal 15 residue long amino acid sequence (PP-5), which is necessary to promote membrane fusion. PP-5 was able to inhibit R18-PM disk membrane fusion and promoted ANTS/DPX contents mixing in a pure vesicle system. This peptide (PP-5) promoted calcium-induced vesicle aggregation of phosphatidylethanolamine:phosphatidylserine LUVs. FTIR analysis confirmed the structural prediction of this peptide as alpha-helical. When modeled as an alpha-helix, this peptide is amphiphilic with a hydrophobicity index of 0.75 and a hydrophobic moment of 0.59. PP-5 has substantial biochemical and functional homology with other well-characterized membrane fusion proteins. These results demonstrate the necessity for peripherin/rds in ROS membrane fusion, specifically the requirement for an intact C-terminal region of this protein.
Background Antiretroviral therapy (ART) initiation for HIV-1 infection is associated with 2-6% loss in bone mineral density (BMD). Objective To evaluate vitamin D3 (4000 IU daily) plus calcium (1000 mg calcium carbonate daily) supplementation on bone loss associated with ART initiation. Design 48-week prospective, randomized, double-blind, placebo-controlled study. Setting Thirty nine AIDS Clinical Trials Network research units. Participants ART-naïve HIV-infected adults. Measurements BMD by dual-energy X-ray absorptiometry (DXA); 25-hydroxy vitamin D (25(OH)D) levels, parathyroid hormone (PTH), phosphate metabolism, markers of bone turnover and systemic inflammation. Results 165 eligible subjects were randomized (79 Vitamin D/calcium (VitD/Cal); 86 placebo); 142 subjects with evaluable DXA data were included in the primary analysis. The study arms were well-balanced at baseline: median age 33 years; 90% male; 33% non-Hispanic black; median CD4 count 341 cells/mm3; and median 25(OH)D 23 ng/mL (57 nmol/L). At 48 weeks, subjects receiving placebo had greater decline in total hip BMD than VitD/Cal: −3.19% median change (1st-3rd quartile (Q1, Q3) −5.12%, −1.02%) vs. (−1.46% −3.16%,−0.40%). respectively (p=0.001). Lumbar spine BMD loss for the two groups was similar: −2.91% (−4.84%, −1.06%) vs. −1.41% (−3.78%, 0.00%), (p=0.085). At week 48, 90% of participants achieved HIV-1 RNA <50 copies/mL. Levels of 25(OH)D3 increased in the VitD/Cal but not the placebo group: median change of 24.5 (14.6, 37.8) vs. 0.7 (−5.3, 4.3) ng/mL, respectively (p<0.001). Additionally, increases in markers of bone turnover were blunted in the VitD/Cal group. Limitations No international sites were included; only 48 weeks of follow up Conclusion Vitamin D/calcium supplementation mitigates the loss of BMD seen with initiation of efavirenz/emtricitabine/tenofovir, particularly at the total hip, which is the site of greatest concern for fragility fracture. Primary Funding Source National Institute of Allergy and Infectious Diseases, Bristol-Meyers Squibb, Gilead Sciences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.