The issues related to the integrability of quantum Calogero-Moser models based on any root systems are addressed. For the models with degenerate potentials, i.e. the rational with/without the harmonic confining force, the hyperbolic and the trigonometric, we demonstrate the following for all the root systems: (i) Construction of a complete set of quantum conserved quantities in terms of a total sum of the Lax matrix
We analyze an unusual class of bosonic dynamical instabilities that arise from dissipative (or non-Hermitian) pairing interactions. We show that, surprisingly, a completely stable dissipative pairing interaction can be combined with simple hopping or beam-splitter interactions (also stable) to generate instabilities. Further, we find that the dissipative steady state in such a situation remains completely pure up until the instability threshold (in clear distinction from standard parametric instabilities). These pairing-induced instabilities also exhibit an extremely pronounced sensitivity to wavefunction localization. This provides a simple yet powerful method for selectively populating and entangling edge modes of photonic (or more general bosonic) lattices having a topological bandstructure. The underlying dissipative pairing interaction is experimentally resource-friendly, requiring the addition of a single additional localized interaction to an existing lattice, and is compatible with a number of existing platforms, including superconducting circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.