Scaling up invariably error-prone quantum processors is a formidable challenge. Although quantum error correction ultimately promises fault-tolerant operation, the required qubit overhead and error thresholds are daunting. In a complementary proposal, co-located, auxiliary ‘spectator’ qubits act as in-situ probes of noise, and enable real-time, coherent corrections of data qubit errors. We use an array of cesium spectator qubits to correct correlated phase errors on an array of rubidium data qubits. By combining in-sequence readout, data processing, and feed-forward operations, these correlated errors are suppressed within the execution of the quantum circuit. The protocol is broadly applicable to quantum information platforms, and establishes key tools for scaling neutral-atom quantum processors: mid-circuit readout of atom arrays, real-time processing and feed-forward, and coherent mid-circuit reloading of atomic qubits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.