Despite the contribution of changes in pancreatic β-cell mass to the development of all forms of diabetes mellitus, few robust approaches currently exist to monitor these changes prospectively in vivo. Although magnetic-resonance imaging (MRI) provides a potentially useful technique, targeting MRI-active probes to the β cell has proved challenging. Zinc ions are highly concentrated in the secretory granule, but they are relatively less abundant in the exocrine pancreas and in other tissues. We have therefore developed functional dual-modal probes based on transition-metal chelates capable of binding zinc. The first of these, Gd⋅1, binds ZnII directly by means of an amidoquinoline moiety (AQA), thus causing a large ratiometric Stokes shift in the fluorescence from λem=410 to 500 nm with an increase in relaxivity from r1=4.2 up to 4.9 mM−1 s−1. The probe is efficiently accumulated into secretory granules in β-cell-derived lines and isolated islets, but more poorly by non-endocrine cells, and leads to a reduction in T1 in human islets. In vivo murine studies of Gd⋅1 have shown accumulation of the probe in the pancreas with increased signal intensity over 140 minutes.
The rotational motion of tolanes along their acetylene axis is not fully understood. What happens to the optical and electronic properties if the tolane backbone is forced into a twisted conformation? Several tethers were investigated to obtain tolanophanes, fixing the torsion angle of the two phenyl rings. X-ray crystal structures revealed tether-specific torsion angles in the solid state. The absorption, emission, and excitation spectra were recorded. Twisted tethered tolane conformers showed blue-shifted absorption; emission spectra were all torsionally independent and identical. The tethered tolanes were embedded in a rigid matrix by freezing to 77 K; well-resolved emission spectra were recorded for planar tolanes, but for twisted systems unexpectedly long-lived phosphorescence was observed. How is this triplet emission explained? Quantum chemical calculations (TDDFT/cam-B3LYP/6-31G*) of the unsubstituted tolane showed that intersystem crossing (ISC) is favored with large spin-orbit coupling, which occurs when the molecular orbitals are orthogonal to each other; this is the case at the crossing of S1/T7. Also, a small energy difference between singlet and triplet states is required; we found that ISC can favorably take place at four crossings: S1/T6, S1/T7, S1/T(8,9), S1/T10.
The ethynyl-phenylene substituted 2,2':6',2''-terpyridine (tpy) derivatives, 4-(phenyl-ethynyl)-2,2':6',2''-terpyridine (L(1)), 4-(methoxyphenyl-ethynyl)-2,2':6',2''-terpyridine (L(2)), 4-(tolyl-ethynyl)-2,2':6',2''-terpyridine (L(3)) and 4-(nitrophenyl-ethynyl)-2,2':6',2''-terpyridine (L(4)) have been used to synthesize four new [RuCl(2,2'-bipyridine)(L(n))]PF6 based complexes. Electronic absorption, resonance Raman, cyclic voltammetry and spectroelectrochemistry aided by DFT calculations were used to explore the influence of the alkynyl substituents on the electronic structures, photochemical and redox properties of the complexes. Furthermore, it is shown that the addition of ethynyl phenyl moieties to the 4-position of the tpy ligand does not have a detrimental effect on these complexes, or the analogous aqua complexes, with respect to their ability to photocatalyse the oxidation of 4-methoxybenzyl alcohol to the corresponding benzaldehyde.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.