Cyclic multiredox centered systems are currently of great interest, with new compounds being reported and developments made in understanding their behavior. Efficient, elegant, and high‐yielding (for macrocyclic species) synthetic routes to two novel alkynyl‐conjugated multiple ferrocene‐ and biferrocene‐containing cyclic compounds are presented. The electronic interactions between the individual ferrocene units have been investigated through electrochemistry, spectroelectrochemistry, density functional theory (DFT), and crystallography to understand the effect of cyclization on the electronic properties and structure.
Biferrocene systems offer a motif that incorporates multiple redox-active centres, enabling redox control, high levels of stability and near perfect conductance levels, and thus is an ideal participant within future molecular electronic systems. However, the incorporation of biferrocene can be restricted by current synthetic routes. Herein, we discuss a new method for the synthesis and incorporation of biferrocenyl motifs within
The ethynyl-phenylene substituted 2,2':6',2''-terpyridine (tpy) derivatives, 4-(phenyl-ethynyl)-2,2':6',2''-terpyridine (L(1)), 4-(methoxyphenyl-ethynyl)-2,2':6',2''-terpyridine (L(2)), 4-(tolyl-ethynyl)-2,2':6',2''-terpyridine (L(3)) and 4-(nitrophenyl-ethynyl)-2,2':6',2''-terpyridine (L(4)) have been used to synthesize four new [RuCl(2,2'-bipyridine)(L(n))]PF6 based complexes. Electronic absorption, resonance Raman, cyclic voltammetry and spectroelectrochemistry aided by DFT calculations were used to explore the influence of the alkynyl substituents on the electronic structures, photochemical and redox properties of the complexes. Furthermore, it is shown that the addition of ethynyl phenyl moieties to the 4-position of the tpy ligand does not have a detrimental effect on these complexes, or the analogous aqua complexes, with respect to their ability to photocatalyse the oxidation of 4-methoxybenzyl alcohol to the corresponding benzaldehyde.
Cyclic multiredoxc entered systems are currently of great interest, with new compounds being reported and developments made in understanding their behavior.Efficient, elegant, and high-yielding (for macrocyclic species) synthetic routes to two novel alkynyl-conjugated multiple ferrocene-and biferrocene-containing cyclic compounds are presented. The electronic interactions between the individual ferrocene units have been investigated through electrochemistry,s pectroelectrochemistry,density functional theory (DFT), and crystallography to understand the effect of cyclization on the electronic properties and structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.