Methanol and allyl alcohol chemisorption and surface reaction in combination with low energy ion scattering (LEIS) were employed to determine the outermost surface compositions and chemical nature of active surface sites present on the orthorhombic (M1) Mo-V-O and Mo-V-Te-Nb-O phases. These orthorhombic phases exhibited vastly different behavior in propane (amm)oxidation reactions and, therefore, represented highly promising model systems for the study of the surface active sites. The LEIS data for the Mo-V-Te-Nb-O catalyst indicated surface depletion for V (-23%) and Mo (-27%), and enrichments for Nb (+55%) and Te (+165%) with respect to its bulk composition. Only minor changes in the topmost surface composition were observed for this catalyst under the conditions of the LEIS experiments at 400 degrees C, which is a typical temperature employed in these propane transformation reactions. These findings strongly suggested that the bulk orthorhombic Mo-V-Te-Nb-O structure may function as a support for the unique active and selective surface monolayer in propane (amm)oxidation. Moreover, direct evidence was obtained that the topmost surface VO(x) sites in the orthorhombic Mo-V-Te-Nb-O catalyst were preferentially covered by chemisorbed allyloxy species, whereas methanol was a significantly less discriminating probe molecule. The surface TeO(x) and NbO(x) sites on the Mo-V-Te-Nb-O catalyst were unable to chemisorb these probe molecules to the same extent as the VO(x) and MoO(x) sites. Our findings suggested that different surface locations for V(5+) ions in the orthorhombic Mo-V-O and Mo-V-Te-Nb-O catalysts may be primarily responsible for vastly different catalytic behavior exhibited by the Mo-V-O and Mo-V-Te-Nb-O phases. Although the proposed isolated V(5+) pentagonal bipyramidal sites in the orthorhombic Mo-V-O phase may be capable of converting propane to propylene with modest selectivity, the selective 8-electron transformation of propane to acrylic acid and acrylonitrile may require the presence of several surface VO(x) redox sites lining the entrances to the hexagonal and heptagonal channels of the orthorhombic Mo-V-Te-Nb-O phase. The study of allyl alcohol oxidation over the Mo-V-O and Mo-V-Te-Nb-O catalysts further suggested that water plays a critical role during the oxidation of acrolein intermediate to acrylic acid over the orthorhombic (M1 phase) Mo-V-Te-Nb-O catalysts. Finally, the present study strongly indicated that chemical probe chemisorption combined with low energy ion scattering (LEIS) is a novel and highly promising surface characterization technique for the investigation of the active surface sites present in the bulk mixed metal oxides.
Uniform nanocrystalline mesoporous mixed cobalt-nickel spinel phases displaying unimodal pores in the 7-12 nm range and relatively high specific surface areas up to 83 m 2 / g were prepared by a novel low temperature synthesis approach in which the desired metal oxide stoichiometries were introduced on a molecular level by reacting heterometallic alkoxide precursors in the presence of supramolecular liquid
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.