The bulk mixed Mo-V-Te oxides possess high activity and selectivity in propane oxidation to acrylic acid and represent well-defined model catalysts for studies of the surface molecular structure-activity/selectivity relationships in this selective oxidation reaction. The elemental compositions, metal oxidation states, and catalytic functions of V, Mo, and Te in the surface region of the model Mo-V-Te-O system were examined employing low energy ion scattering (LEIS) and X-ray photoelectron spectroscopy (XPS). This study indicated that the surfaces of these catalysts are terminated with a monolayer, which possesses a different elemental composition from that of the bulk. The rates of propane consumption and formation of propylene and acrylic acid depended on the topmost surface V concentration, whereas no dependence of these reaction rates on either the surface Mo or Te concentrations was observed. These findings suggested that the bulk Mo-V-Te-O structure may function as a support for the unique active and selective surface monolayer in propane oxidation to acrylic acid. The results of this study have important practical consequences for the development of improved selective oxidation catalysts by introducing surface metal oxide components to form new surface active V-O-M sites for propane oxidation to acrylic acid.
The outermost surfaces and subsurface layers of the orthorhombic (M1) Mo-V-O catalysts promoted with Te, Nb, and Sb oxide species at submonolayer surface coverage were examined by low-energy ion scattering (LEIS). This study indicated that the Nb oxide species was preferentially located at the topmost surface, while the subsurface Te and Sb concentrations declined gradually into the bulk. Although the original Mo-V-O catalyst was essentially unselective in propane oxidation to acrylic acid, significant improvement in the selectivity to acrylic acid was observed when Te, Nb, and Sb oxides were present as the surface species at submonolayer coverage. These findings further suggested that the formation of the surface V-O-M bonds (M = Nb, Te, or Sb) was highly beneficial for both the activity and selectivity of the orthorhombic Mo-V-O catalysts in propane oxidation to acrylic acid. The highest selectivity was observed when both Nb and Te (or Sb) oxide species were present at the surface. The selectivity trends established for the surface-promoted Mo-V-O catalyst parallel those found previously for the corresponding bulk Mo-V-M-O catalysts. These results further indicated that the introduction of surface metal oxide species is a highly promising method to prepare well-defined model catalysts for studies of the structure-activity/selectivity relationships as well as optimize the catalytic performance of the bulk mixed Mo-V-M-O catalysts for selective (amm)oxidation of propane.
Methanol and allyl alcohol chemisorption and surface reaction in combination with low energy ion scattering (LEIS) were employed to determine the outermost surface compositions and chemical nature of active surface sites present on the orthorhombic (M1) Mo-V-O and Mo-V-Te-Nb-O phases. These orthorhombic phases exhibited vastly different behavior in propane (amm)oxidation reactions and, therefore, represented highly promising model systems for the study of the surface active sites. The LEIS data for the Mo-V-Te-Nb-O catalyst indicated surface depletion for V (-23%) and Mo (-27%), and enrichments for Nb (+55%) and Te (+165%) with respect to its bulk composition. Only minor changes in the topmost surface composition were observed for this catalyst under the conditions of the LEIS experiments at 400 degrees C, which is a typical temperature employed in these propane transformation reactions. These findings strongly suggested that the bulk orthorhombic Mo-V-Te-Nb-O structure may function as a support for the unique active and selective surface monolayer in propane (amm)oxidation. Moreover, direct evidence was obtained that the topmost surface VO(x) sites in the orthorhombic Mo-V-Te-Nb-O catalyst were preferentially covered by chemisorbed allyloxy species, whereas methanol was a significantly less discriminating probe molecule. The surface TeO(x) and NbO(x) sites on the Mo-V-Te-Nb-O catalyst were unable to chemisorb these probe molecules to the same extent as the VO(x) and MoO(x) sites. Our findings suggested that different surface locations for V(5+) ions in the orthorhombic Mo-V-O and Mo-V-Te-Nb-O catalysts may be primarily responsible for vastly different catalytic behavior exhibited by the Mo-V-O and Mo-V-Te-Nb-O phases. Although the proposed isolated V(5+) pentagonal bipyramidal sites in the orthorhombic Mo-V-O phase may be capable of converting propane to propylene with modest selectivity, the selective 8-electron transformation of propane to acrylic acid and acrylonitrile may require the presence of several surface VO(x) redox sites lining the entrances to the hexagonal and heptagonal channels of the orthorhombic Mo-V-Te-Nb-O phase. The study of allyl alcohol oxidation over the Mo-V-O and Mo-V-Te-Nb-O catalysts further suggested that water plays a critical role during the oxidation of acrolein intermediate to acrylic acid over the orthorhombic (M1 phase) Mo-V-Te-Nb-O catalysts. Finally, the present study strongly indicated that chemical probe chemisorption combined with low energy ion scattering (LEIS) is a novel and highly promising surface characterization technique for the investigation of the active surface sites present in the bulk mixed metal oxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.