SummaryThe completion of the Arabidopsis thaliana genome has revealed that there are nine members of the Pht1 family of phosphate transporters in this species. As a step towards identifying the role of this gene family in phosphorus nutrition, we have isolated the promoter regions from each of these genes, and fused them to the reporter genes b-glucuronidase and/or green¯uorescent protein. These chimeric genes have been introduced into A. thaliana, and reporter gene expression has been assayed in plants grown in soil containing high and low concentrations of inorganic phosphate (Pi). Four of these promoters were found to direct reporter gene expression in the root epidermis, and were induced under conditions of phosphate deprivation in a manner similar to previously characterised Pht1 genes. Other members of this family, however, showed expression in a range of shoot tissues and in pollen grains, which was con®rmed by RT-PCR. We also provide evidence that the root epidermally expressed genes are expressed most strongly in trichoblasts, the primary sites for uptake of Pi. These results suggest that this gene family plays a wider role in phosphate uptake and remobilisation throughout the plant than was previously believed.
Putative phosphate transporters have been identified in a barley (Hordeum vulgare L.) genomic library by their homology to known phosphate transporters from dicot species. The genes designated HORvu;Pht1;1 and HORvu;Pht1;6 encode proteins of 521 and 535 amino acids respectively with 12 predicted membrane-spanning domains and other motifs common to the Phtl family of phosphate transporters. HORvu;Pht1;1 is expressed exclusively in roots and is strongly induced by phosphate deprivation. HORvu;Pht1;6 is expressed in the aerial parts of the plant with strongest expression in old leaves and flag leaves. In situ hybridization showed that HORvu;Pht1;6 is expressed in the phloem of vascular bundles in leaves and ears. In order to study the biochemical properties of HORvu;Pht1;1 and HORvu;Pht1;6, the genes were expressed in transgenic rice (Oryza sativa L.) plants under the control of the rice actin promoter and suspension cell cultures were generated. Cells derived from transgenic plants were able to take up phosphate at a much higher rate than control cells, demonstrating that both genes encode functional phosphate transporters. The estimated Km for phosphate for cells expressing HORvu;Pht1;1 was 9.06 +/- 0.82 microM, which is characteristic of a high-affinity transporter. The rate of phosphate uptake decreased with increasing pH, suggesting that HORvu;Pht1;1 operates as a H+/H2PO4(-) symporter. In contrast, the estimated Km for phosphate for cells expressing HORvu;Pht1;6 was 385 +/- 61 microM, which is characteristic of a low-affinity transporter. Taken together, the results suggest that HORvu;Pht1;1 functions in uptake of phosphate at the root surface, while HORvu;Pht1;6 probably functions in remobilization of stored phosphate from leaves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.